Machine learning in spectral domain
Theoretical aspects of automated learning from data involving deep neural networks have open questions. Here Giambagli et al. show that training the neural networks in the spectral domain of the network coupling matrices can reduce the amount of learning parameters and improve the pre-training proce...
Guardado en:
Autores principales: | Lorenzo Giambagli, Lorenzo Buffoni, Timoteo Carletti, Walter Nocentini, Duccio Fanelli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/15ef900bcaf14e289d02281b5f925cbd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying domains of applicability of machine learning models for materials science
por: Christopher Sutton, et al.
Publicado: (2020) -
A normative database of A-scan data using the Heidelberg Spectralis Spectral Domain Optical Coherence Tomography machine.
por: Joos Meyer, et al.
Publicado: (2021) -
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
por: J. M. Ripalda, et al.
Publicado: (2018) -
Experimental demonstration of spectral domain computational ghost imaging
por: Piotr Ryczkowski, et al.
Publicado: (2021) -
Soliton microcomb based spectral domain optical coherence tomography
por: Paul J. Marchand, et al.
Publicado: (2021)