Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment
In this study, an analytical model was established for calculating solute distribution pattern and precipitates of the Al–Mg–Si series alloys resistance spot welds. By coupling the model with a thermodynamic database, a volume element Ω was considered, then used to calculate the effective Mg and Si...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/15f6d75c94174cba8d70f116a754c659 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:15f6d75c94174cba8d70f116a754c659 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:15f6d75c94174cba8d70f116a754c6592021-11-28T04:32:43ZQuantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment2238-785410.1016/j.jmrt.2021.11.063https://doaj.org/article/15f6d75c94174cba8d70f116a754c6592021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2238785421013429https://doaj.org/toc/2238-7854In this study, an analytical model was established for calculating solute distribution pattern and precipitates of the Al–Mg–Si series alloys resistance spot welds. By coupling the model with a thermodynamic database, a volume element Ω was considered, then used to calculate the effective Mg and Si concentration in α-Al solid solution under different post–weld heat treatment. Resistance spot welding test of Aluminum alloys 6061 and 6082 was carried out, followed by sample characterization via transmission electron microscopy (TEM). Analysis of β-Mg2Si phase's distribution revealed that Mg and Si were segregated at the inter-granular region after welding. Notably, the β-Mg2Si phase was dissolved during post-welding solid solution treatment, thereby making Mg and Si to diffuse into the inner-granular region. This solute redistribution process was consistent with C-fS curves evolution calculated by the analytical model. The calculated effective Mg and Si concentration set up a platform for further calculation of precipitate evolution curves. Precipitate mole fraction was positively correlated with the weld's strength.Yu ZhangHong LiZhuoxin LiBober MariuszJacek SenkaraElsevierarticleAl–Mg–Si series AlloysPrecipitation strengtheningPost–weld heat treatment resistance spot weldingScheil-gulliver modelMining engineering. MetallurgyTN1-997ENJournal of Materials Research and Technology, Vol 15, Iss , Pp 5906-5919 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Al–Mg–Si series Alloys Precipitation strengthening Post–weld heat treatment resistance spot welding Scheil-gulliver model Mining engineering. Metallurgy TN1-997 |
spellingShingle |
Al–Mg–Si series Alloys Precipitation strengthening Post–weld heat treatment resistance spot welding Scheil-gulliver model Mining engineering. Metallurgy TN1-997 Yu Zhang Hong Li Zhuoxin Li Bober Mariusz Jacek Senkara Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment |
description |
In this study, an analytical model was established for calculating solute distribution pattern and precipitates of the Al–Mg–Si series alloys resistance spot welds. By coupling the model with a thermodynamic database, a volume element Ω was considered, then used to calculate the effective Mg and Si concentration in α-Al solid solution under different post–weld heat treatment. Resistance spot welding test of Aluminum alloys 6061 and 6082 was carried out, followed by sample characterization via transmission electron microscopy (TEM). Analysis of β-Mg2Si phase's distribution revealed that Mg and Si were segregated at the inter-granular region after welding. Notably, the β-Mg2Si phase was dissolved during post-welding solid solution treatment, thereby making Mg and Si to diffuse into the inner-granular region. This solute redistribution process was consistent with C-fS curves evolution calculated by the analytical model. The calculated effective Mg and Si concentration set up a platform for further calculation of precipitate evolution curves. Precipitate mole fraction was positively correlated with the weld's strength. |
format |
article |
author |
Yu Zhang Hong Li Zhuoxin Li Bober Mariusz Jacek Senkara |
author_facet |
Yu Zhang Hong Li Zhuoxin Li Bober Mariusz Jacek Senkara |
author_sort |
Yu Zhang |
title |
Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment |
title_short |
Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment |
title_full |
Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment |
title_fullStr |
Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment |
title_full_unstemmed |
Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment |
title_sort |
quantitative analysis of the solute redistribution and precipitate of al–mg–si series alloys resistance spot welds after post–weld heat treatment |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/15f6d75c94174cba8d70f116a754c659 |
work_keys_str_mv |
AT yuzhang quantitativeanalysisofthesoluteredistributionandprecipitateofalmgsiseriesalloysresistancespotweldsafterpostweldheattreatment AT hongli quantitativeanalysisofthesoluteredistributionandprecipitateofalmgsiseriesalloysresistancespotweldsafterpostweldheattreatment AT zhuoxinli quantitativeanalysisofthesoluteredistributionandprecipitateofalmgsiseriesalloysresistancespotweldsafterpostweldheattreatment AT bobermariusz quantitativeanalysisofthesoluteredistributionandprecipitateofalmgsiseriesalloysresistancespotweldsafterpostweldheattreatment AT jaceksenkara quantitativeanalysisofthesoluteredistributionandprecipitateofalmgsiseriesalloysresistancespotweldsafterpostweldheattreatment |
_version_ |
1718408302449131520 |