Predicting coastal algal blooms with environmental factors by machine learning methods
Harmful algal blooms are a major type of marine disaster that endangers the marine ecological environment and human health. Since the algal bloom is a complex nonlinear process with time characteristics, traditional statistical methods often cannot provide good predictions. In this paper, we propose...
Guardado en:
Autores principales: | Peixuan Yu, Rui Gao, Dezhen Zhang, Zhi-Ping Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/15fe8bd8888b466a98c1735883b26190 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Temporal dynamics of the phytoplankton community associated with environmental factors and harmful algal blooms in Acapulco Bay, Mexico
por: Cervantes-Urieta,Víctor A., et al.
Publicado: (2021) -
La increíble empresa de Sarmiento de Gamboa y su triste fin: Posibles causas de la tragedia en el Estrecho de Magallanes en el siglo XVI
por: ESPINOZA G,JUAN PABLO, et al.
Publicado: (2010) -
A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
por: Rabia Munsaf Khan, et al.
Publicado: (2021) -
Metabarcoding Analysis of Harmful Algal Bloom Species in the Western Pacific Seamount Regions
por: Qing Xu, et al.
Publicado: (2021) -
A bloom of Azadinium polongum in coastal waters off Peru
por: Tillmann,Urban, et al.
Publicado: (2017)