NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
The application of negative binomial mixed models (NBMMs) to single-cell data is computationally demanding. To address this issue, Liang He et al. have developed NEBULA, an efficient algorithm that can analyze differential gene expression or co-expression networks in multi-subject single-cell data s...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1604a175b02d438a8389ecd99650f39c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1604a175b02d438a8389ecd99650f39c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1604a175b02d438a8389ecd99650f39c2021-12-02T14:47:37ZNEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data10.1038/s42003-021-02146-62399-3642https://doaj.org/article/1604a175b02d438a8389ecd99650f39c2021-05-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02146-6https://doaj.org/toc/2399-3642The application of negative binomial mixed models (NBMMs) to single-cell data is computationally demanding. To address this issue, Liang He et al. have developed NEBULA, an efficient algorithm that can analyze differential gene expression or co-expression networks in multi-subject single-cell data sets, and validate it on snRNA-seq and scRNA-seq data sets comprising ~200k cells from cohorts of Alzheimer’s disease and multiple sclerosis patients.Liang HeJose Davila-VelderrainTomokazu S. SumidaDavid A. HaflerManolis KellisAlexander M. KulminskiNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-17 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Liang He Jose Davila-Velderrain Tomokazu S. Sumida David A. Hafler Manolis Kellis Alexander M. Kulminski NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data |
description |
The application of negative binomial mixed models (NBMMs) to single-cell data is computationally demanding. To address this issue, Liang He et al. have developed NEBULA, an efficient algorithm that can analyze differential gene expression or co-expression networks in multi-subject single-cell data sets, and validate it on snRNA-seq and scRNA-seq data sets comprising ~200k cells from cohorts of Alzheimer’s disease and multiple sclerosis patients. |
format |
article |
author |
Liang He Jose Davila-Velderrain Tomokazu S. Sumida David A. Hafler Manolis Kellis Alexander M. Kulminski |
author_facet |
Liang He Jose Davila-Velderrain Tomokazu S. Sumida David A. Hafler Manolis Kellis Alexander M. Kulminski |
author_sort |
Liang He |
title |
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data |
title_short |
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data |
title_full |
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data |
title_fullStr |
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data |
title_full_unstemmed |
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data |
title_sort |
nebula is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1604a175b02d438a8389ecd99650f39c |
work_keys_str_mv |
AT lianghe nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata AT josedavilavelderrain nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata AT tomokazussumida nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata AT davidahafler nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata AT manoliskellis nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata AT alexandermkulminski nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata |
_version_ |
1718389493540585472 |