NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data

The application of negative binomial mixed models (NBMMs) to single-cell data is computationally demanding. To address this issue, Liang He et al. have developed NEBULA, an efficient algorithm that can analyze differential gene expression or co-expression networks in multi-subject single-cell data s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liang He, Jose Davila-Velderrain, Tomokazu S. Sumida, David A. Hafler, Manolis Kellis, Alexander M. Kulminski
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/1604a175b02d438a8389ecd99650f39c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1604a175b02d438a8389ecd99650f39c
record_format dspace
spelling oai:doaj.org-article:1604a175b02d438a8389ecd99650f39c2021-12-02T14:47:37ZNEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data10.1038/s42003-021-02146-62399-3642https://doaj.org/article/1604a175b02d438a8389ecd99650f39c2021-05-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02146-6https://doaj.org/toc/2399-3642The application of negative binomial mixed models (NBMMs) to single-cell data is computationally demanding. To address this issue, Liang He et al. have developed NEBULA, an efficient algorithm that can analyze differential gene expression or co-expression networks in multi-subject single-cell data sets, and validate it on snRNA-seq and scRNA-seq data sets comprising ~200k cells from cohorts of Alzheimer’s disease and multiple sclerosis patients.Liang HeJose Davila-VelderrainTomokazu S. SumidaDavid A. HaflerManolis KellisAlexander M. KulminskiNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Liang He
Jose Davila-Velderrain
Tomokazu S. Sumida
David A. Hafler
Manolis Kellis
Alexander M. Kulminski
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
description The application of negative binomial mixed models (NBMMs) to single-cell data is computationally demanding. To address this issue, Liang He et al. have developed NEBULA, an efficient algorithm that can analyze differential gene expression or co-expression networks in multi-subject single-cell data sets, and validate it on snRNA-seq and scRNA-seq data sets comprising ~200k cells from cohorts of Alzheimer’s disease and multiple sclerosis patients.
format article
author Liang He
Jose Davila-Velderrain
Tomokazu S. Sumida
David A. Hafler
Manolis Kellis
Alexander M. Kulminski
author_facet Liang He
Jose Davila-Velderrain
Tomokazu S. Sumida
David A. Hafler
Manolis Kellis
Alexander M. Kulminski
author_sort Liang He
title NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
title_short NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
title_full NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
title_fullStr NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
title_full_unstemmed NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
title_sort nebula is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1604a175b02d438a8389ecd99650f39c
work_keys_str_mv AT lianghe nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata
AT josedavilavelderrain nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata
AT tomokazussumida nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata
AT davidahafler nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata
AT manoliskellis nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata
AT alexandermkulminski nebulaisafastnegativebinomialmixedmodelfordifferentialorcoexpressionanalysisoflargescalemultisubjectsinglecelldata
_version_ 1718389493540585472