NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
The application of negative binomial mixed models (NBMMs) to single-cell data is computationally demanding. To address this issue, Liang He et al. have developed NEBULA, an efficient algorithm that can analyze differential gene expression or co-expression networks in multi-subject single-cell data s...
Guardado en:
Autores principales: | Liang He, Jose Davila-Velderrain, Tomokazu S. Sumida, David A. Hafler, Manolis Kellis, Alexander M. Kulminski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1604a175b02d438a8389ecd99650f39c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
por: C. K. Li, et al.
Publicado: (2016) -
A multiresolution framework to characterize single-cell state landscapes
por: Shahin Mohammadi, et al.
Publicado: (2020) -
The Crab Pulsar and Nebula as Seen in Gamma-Rays
por: Elena Amato, et al.
Publicado: (2021) -
ON SUMS OF BINOMIAL COEFFICIENTS
por: SOFO,ANTHONY
Publicado: (2009) -
Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers
por: Necdet Batir, et al.
Publicado: (2021)