Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics

The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.

Guardado en:
Detalles Bibliográficos
Autores principales: Mathias Wilhelm, Daniel P. Zolg, Michael Graber, Siegfried Gessulat, Tobias Schmidt, Karsten Schnatbaum, Celina Schwencke-Westphal, Philipp Seifert, Niklas de Andrade Krätzig, Johannes Zerweck, Tobias Knaute, Eva Bräunlein, Patroklos Samaras, Ludwig Lautenbacher, Susan Klaeger, Holger Wenschuh, Roland Rad, Bernard Delanghe, Andreas Huhmer, Steven A. Carr, Karl R. Clauser, Angela M. Krackhardt, Ulf Reimer, Bernhard Kuster
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1610571c49f445ee8754bc881b81762b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.