Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics

The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.

Guardado en:
Detalles Bibliográficos
Autores principales: Mathias Wilhelm, Daniel P. Zolg, Michael Graber, Siegfried Gessulat, Tobias Schmidt, Karsten Schnatbaum, Celina Schwencke-Westphal, Philipp Seifert, Niklas de Andrade Krätzig, Johannes Zerweck, Tobias Knaute, Eva Bräunlein, Patroklos Samaras, Ludwig Lautenbacher, Susan Klaeger, Holger Wenschuh, Roland Rad, Bernard Delanghe, Andreas Huhmer, Steven A. Carr, Karl R. Clauser, Angela M. Krackhardt, Ulf Reimer, Bernhard Kuster
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1610571c49f445ee8754bc881b81762b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1610571c49f445ee8754bc881b81762b
record_format dspace
spelling oai:doaj.org-article:1610571c49f445ee8754bc881b81762b2021-12-02T17:34:34ZDeep learning boosts sensitivity of mass spectrometry-based immunopeptidomics10.1038/s41467-021-23713-92041-1723https://doaj.org/article/1610571c49f445ee8754bc881b81762b2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23713-9https://doaj.org/toc/2041-1723The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.Mathias WilhelmDaniel P. ZolgMichael GraberSiegfried GessulatTobias SchmidtKarsten SchnatbaumCelina Schwencke-WestphalPhilipp SeifertNiklas de Andrade KrätzigJohannes ZerweckTobias KnauteEva BräunleinPatroklos SamarasLudwig LautenbacherSusan KlaegerHolger WenschuhRoland RadBernard DelangheAndreas HuhmerSteven A. CarrKarl R. ClauserAngela M. KrackhardtUlf ReimerBernhard KusterNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mathias Wilhelm
Daniel P. Zolg
Michael Graber
Siegfried Gessulat
Tobias Schmidt
Karsten Schnatbaum
Celina Schwencke-Westphal
Philipp Seifert
Niklas de Andrade Krätzig
Johannes Zerweck
Tobias Knaute
Eva Bräunlein
Patroklos Samaras
Ludwig Lautenbacher
Susan Klaeger
Holger Wenschuh
Roland Rad
Bernard Delanghe
Andreas Huhmer
Steven A. Carr
Karl R. Clauser
Angela M. Krackhardt
Ulf Reimer
Bernhard Kuster
Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
description The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.
format article
author Mathias Wilhelm
Daniel P. Zolg
Michael Graber
Siegfried Gessulat
Tobias Schmidt
Karsten Schnatbaum
Celina Schwencke-Westphal
Philipp Seifert
Niklas de Andrade Krätzig
Johannes Zerweck
Tobias Knaute
Eva Bräunlein
Patroklos Samaras
Ludwig Lautenbacher
Susan Klaeger
Holger Wenschuh
Roland Rad
Bernard Delanghe
Andreas Huhmer
Steven A. Carr
Karl R. Clauser
Angela M. Krackhardt
Ulf Reimer
Bernhard Kuster
author_facet Mathias Wilhelm
Daniel P. Zolg
Michael Graber
Siegfried Gessulat
Tobias Schmidt
Karsten Schnatbaum
Celina Schwencke-Westphal
Philipp Seifert
Niklas de Andrade Krätzig
Johannes Zerweck
Tobias Knaute
Eva Bräunlein
Patroklos Samaras
Ludwig Lautenbacher
Susan Klaeger
Holger Wenschuh
Roland Rad
Bernard Delanghe
Andreas Huhmer
Steven A. Carr
Karl R. Clauser
Angela M. Krackhardt
Ulf Reimer
Bernhard Kuster
author_sort Mathias Wilhelm
title Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_short Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_full Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_fullStr Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_full_unstemmed Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_sort deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1610571c49f445ee8754bc881b81762b
work_keys_str_mv AT mathiaswilhelm deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT danielpzolg deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT michaelgraber deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT siegfriedgessulat deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT tobiasschmidt deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT karstenschnatbaum deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT celinaschwenckewestphal deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT philippseifert deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT niklasdeandradekratzig deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT johanneszerweck deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT tobiasknaute deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT evabraunlein deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT patroklossamaras deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT ludwiglautenbacher deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT susanklaeger deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT holgerwenschuh deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT rolandrad deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT bernarddelanghe deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT andreashuhmer deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT stevenacarr deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT karlrclauser deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT angelamkrackhardt deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT ulfreimer deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT bernhardkuster deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
_version_ 1718379924611399680