Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.
Guardado en:
Autores principales: | Mathias Wilhelm, Daniel P. Zolg, Michael Graber, Siegfried Gessulat, Tobias Schmidt, Karsten Schnatbaum, Celina Schwencke-Westphal, Philipp Seifert, Niklas de Andrade Krätzig, Johannes Zerweck, Tobias Knaute, Eva Bräunlein, Patroklos Samaras, Ludwig Lautenbacher, Susan Klaeger, Holger Wenschuh, Roland Rad, Bernard Delanghe, Andreas Huhmer, Steven A. Carr, Karl R. Clauser, Angela M. Krackhardt, Ulf Reimer, Bernhard Kuster |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1610571c49f445ee8754bc881b81762b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
por: Mathias Wilhelm, et al.
Publicado: (2021) -
Leveraging Immunopeptidomics To Study and Combat Infectious Disease
por: Owen K. Leddy, et al.
Publicado: (2021) -
Generating high quality libraries for DIA MS with empirically corrected peptide predictions
por: Brian C. Searle, et al.
Publicado: (2020) -
HLA-B57 micropolymorphism defines the sequence and conformational breadth of the immunopeptidome
por: Patricia T. Illing, et al.
Publicado: (2018) -
Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors
por: Martin Ebinger, et al.
Publicado: (2021)