Influence of particle size of nickel powder on their velocity and temperature in cold spraying

To deposit coatings in cold gas-dynamic spraying (CS), a high-speed gas flow is used to accelerate and heat particles. Therefore, first of all, it is necessary to consider the general laws of the gas flow and the movement of particles in the flow, as well as its interaction with the substrate. Due t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Олександр Володимирович Шорінов, Сергій Олександрович Поливяний
Formato: article
Lenguaje:EN
RU
UK
Publicado: National Aerospace University «Kharkiv Aviation Institute» 2021
Materias:
Acceso en línea:https://doaj.org/article/16124463589f4eb0b74e51d0e3abeae2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:16124463589f4eb0b74e51d0e3abeae2
record_format dspace
spelling oai:doaj.org-article:16124463589f4eb0b74e51d0e3abeae22021-11-09T07:53:09ZInfluence of particle size of nickel powder on their velocity and temperature in cold spraying1727-73372663-221710.32620/aktt.2021.4sup1.15https://doaj.org/article/16124463589f4eb0b74e51d0e3abeae22021-08-01T00:00:00Zhttp://nti.khai.edu/ojs/index.php/aktt/article/view/1460https://doaj.org/toc/1727-7337https://doaj.org/toc/2663-2217To deposit coatings in cold gas-dynamic spraying (CS), a high-speed gas flow is used to accelerate and heat particles. Therefore, first of all, it is necessary to consider the general laws of the gas flow and the movement of particles in the flow, as well as its interaction with the substrate. Due to the CS process depends primarily on the particle velocity, it is important to understand the effect of the process parameters (pressure and temperature at the nozzle inlet), the characteristics of the powder particles (material density, shape, and size), and the geometry of the nozzle. The gas velocity limits the particle velocity that can be achieved with the CS process. Utilization of high gas pressure, long nozzles, and small particles lead to the fact that the particles move at a velocity close to the velocity of the gas, which can be increased by using gases with low molecular weight, as well as heating it. As a result of the analysis of theoretical and experimental methods for studying the cold spraying process, it was found that for coating formation velocity of powder particles needs to obtain a certain value (critical velocity), which depends on particle temperature at the impact, and density of the particle material. Numerical simulation of gas dynamics of a two-phase flow in CS nozzle and at the outlet from it for the range of air temperatures from 573 K to 873 K and constant pressure of 1,0 MPa has been carried out. The influence of the diameter of nickel powder particles on their temperature and velocity at impact was investigated. Numerical simulations were performed for a range of particle diameters from 5 to 30 μm. In the future, the results obtained can be used to find the optimal size of the powder particles under certain spraying conditions, to calculate the critical particle velocity, and also to develop the window of deposition. This will make it possible to select the optimal parameters of the gas flow at the nozzle inlet (pressure and temperature), which are guaranteed to ensure the adhesion of particles to the substrate and the formation of coatings. Also, the results obtained can be used to predict the properties of coatings, as well as to achieve maximum deposition efficiency of the CS process.Олександр Володимирович ШоріновСергій Олександрович ПоливянийNational Aerospace University «Kharkiv Aviation Institute»articleхолодне газодинамічне напилюванняпокриттяпараметри напилюваннятемпература та швидкість частиноккритична швидкістьчисельне моделюваннядвофазний потікMotor vehicles. Aeronautics. AstronauticsTL1-4050ENRUUKАвіаційно-космічна техніка та технологія, Vol 0, Iss 4sup1, Pp 110-116 (2021)
institution DOAJ
collection DOAJ
language EN
RU
UK
topic холодне газодинамічне напилювання
покриття
параметри напилювання
температура та швидкість частинок
критична швидкість
чисельне моделювання
двофазний потік
Motor vehicles. Aeronautics. Astronautics
TL1-4050
spellingShingle холодне газодинамічне напилювання
покриття
параметри напилювання
температура та швидкість частинок
критична швидкість
чисельне моделювання
двофазний потік
Motor vehicles. Aeronautics. Astronautics
TL1-4050
Олександр Володимирович Шорінов
Сергій Олександрович Поливяний
Influence of particle size of nickel powder on their velocity and temperature in cold spraying
description To deposit coatings in cold gas-dynamic spraying (CS), a high-speed gas flow is used to accelerate and heat particles. Therefore, first of all, it is necessary to consider the general laws of the gas flow and the movement of particles in the flow, as well as its interaction with the substrate. Due to the CS process depends primarily on the particle velocity, it is important to understand the effect of the process parameters (pressure and temperature at the nozzle inlet), the characteristics of the powder particles (material density, shape, and size), and the geometry of the nozzle. The gas velocity limits the particle velocity that can be achieved with the CS process. Utilization of high gas pressure, long nozzles, and small particles lead to the fact that the particles move at a velocity close to the velocity of the gas, which can be increased by using gases with low molecular weight, as well as heating it. As a result of the analysis of theoretical and experimental methods for studying the cold spraying process, it was found that for coating formation velocity of powder particles needs to obtain a certain value (critical velocity), which depends on particle temperature at the impact, and density of the particle material. Numerical simulation of gas dynamics of a two-phase flow in CS nozzle and at the outlet from it for the range of air temperatures from 573 K to 873 K and constant pressure of 1,0 MPa has been carried out. The influence of the diameter of nickel powder particles on their temperature and velocity at impact was investigated. Numerical simulations were performed for a range of particle diameters from 5 to 30 μm. In the future, the results obtained can be used to find the optimal size of the powder particles under certain spraying conditions, to calculate the critical particle velocity, and also to develop the window of deposition. This will make it possible to select the optimal parameters of the gas flow at the nozzle inlet (pressure and temperature), which are guaranteed to ensure the adhesion of particles to the substrate and the formation of coatings. Also, the results obtained can be used to predict the properties of coatings, as well as to achieve maximum deposition efficiency of the CS process.
format article
author Олександр Володимирович Шорінов
Сергій Олександрович Поливяний
author_facet Олександр Володимирович Шорінов
Сергій Олександрович Поливяний
author_sort Олександр Володимирович Шорінов
title Influence of particle size of nickel powder on their velocity and temperature in cold spraying
title_short Influence of particle size of nickel powder on their velocity and temperature in cold spraying
title_full Influence of particle size of nickel powder on their velocity and temperature in cold spraying
title_fullStr Influence of particle size of nickel powder on their velocity and temperature in cold spraying
title_full_unstemmed Influence of particle size of nickel powder on their velocity and temperature in cold spraying
title_sort influence of particle size of nickel powder on their velocity and temperature in cold spraying
publisher National Aerospace University «Kharkiv Aviation Institute»
publishDate 2021
url https://doaj.org/article/16124463589f4eb0b74e51d0e3abeae2
work_keys_str_mv AT oleksandrvolodimirovičšorínov influenceofparticlesizeofnickelpowderontheirvelocityandtemperatureincoldspraying
AT sergíjoleksandrovičpolivânij influenceofparticlesizeofnickelpowderontheirvelocityandtemperatureincoldspraying
_version_ 1718441178818412544