Unravelling the molecular basis of the dominant negative effect of myosin XI tails on P-bodies.

The directional movement and positioning of organelles and macromolecules is essential for regulating and maintaining cellular functions in eukaryotic cells. In plants, these processes are actin-based and driven by class XI myosins, which transport various cargos in a directed manner. As the analysi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lisa Stephan, Marc Jakoby, Arijit Das, Eva Koebke, Martin Hülskamp
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/16375288069c4be083dad7b18e903712
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The directional movement and positioning of organelles and macromolecules is essential for regulating and maintaining cellular functions in eukaryotic cells. In plants, these processes are actin-based and driven by class XI myosins, which transport various cargos in a directed manner. As the analysis of myosin function is challenging due to high levels of redundancy, dominant negative acting truncated myosins have frequently been used to study intracellular transport processes. A comparison of the dominant negative effect of the coiled-coil domains and the GTD domains revealed a much stronger inhibition of P-body movement by the GTD domains. In addition, we show that the GTD domain does not inhibit P-body movement when driven by a hybrid myosin in which the GTD domain was replaced by DCP2. These data suggest that the dominant negative effect of myosin tails involves a competition of the GTD domains for cargo binding sites.