Pentagonal quasigroups, their translatability and parastrophes
Any pentagonal quasigroup QQ is proved to have the product xy=φ(x)+y−φ(y)xy=\varphi \left(x)+y-\varphi (y), where (Q,+)\left(Q,+) is an Abelian group, φ\varphi is its regular automorphism satisfying φ4−φ3+φ2−φ+ε=0{\varphi }^{4}-{\varphi }^{3}+{\varphi }^{2}-\varphi +\varepsilon =0 and ε\varepsilon...
Guardado en:
Autores principales: | Dudek Wieslaw A., Monzo Robert A. R. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/163a26228c004017b35408ae550bf033 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quasigroups and related systems
Publicado: (1994) -
Inflection Points in Cubic Structures
por: Vladimir Volenec, et al.
Publicado: (2021) -
Fraud Pentagon and Fraudulent Financial Reporting: Evidence from Manufacturing Companies in Indonesia and Malaysia
por: Erni Suryandari Fathmaningrum, et al.
Publicado: (2021) -
On kernels by rainbow paths in arc-coloured digraphs
por: Li Ruijuan, et al.
Publicado: (2021) -
On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree
por: Arredondo John A., et al.
Publicado: (2019)