Annotation-free learning of plankton for classification and anomaly detection
Abstract The acquisition of increasingly large plankton digital image datasets requires automatic methods of recognition and classification. As data size and collection speed increases, manual annotation and database representation are often bottlenecks for utilization of machine learning algorithms...
Guardado en:
Autores principales: | Vito P. Pastore, Thomas G. Zimmerman, Sujoy K. Biswas, Simone Bianco |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/165c621872b74325a17ffed8475d41a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images
por: Jamal N. Hasoon, et al.
Publicado: (2021) -
Machine Learning in Network Anomaly Detection: A Survey
por: Song Wang, et al.
Publicado: (2021) -
An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
por: Chi-Long Chen, et al.
Publicado: (2021) -
Machine Learning Enhanced Entropy-Based Network Anomaly Detection
por: TIMCENKO, V., et al.
Publicado: (2021) -
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
por: Seungdong Yoa, et al.
Publicado: (2021)