Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance
Abstract In this paper, we propose a method of designing ultra-wideband single-layer metasurfaces for cross-polarization conversion, via the introduction of Fano resonances. By adding sub-branches onto the unit cell structure, the induced surface currents are disturbed, leading to coexistence of bot...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1660d44df6c44ca6acaec9e56f39f84f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1660d44df6c44ca6acaec9e56f39f84f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1660d44df6c44ca6acaec9e56f39f84f2021-12-02T14:12:10ZSingle-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance10.1038/s41598-020-79945-02045-2322https://doaj.org/article/1660d44df6c44ca6acaec9e56f39f84f2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79945-0https://doaj.org/toc/2045-2322Abstract In this paper, we propose a method of designing ultra-wideband single-layer metasurfaces for cross-polarization conversion, via the introduction of Fano resonances. By adding sub-branches onto the unit cell structure, the induced surface currents are disturbed, leading to coexistence of both bright and dark modes at higher frequencies. Due to the strong interaction between the two modes, Fano resonance can be produced. In this way, five resonances in all are produced by the single-layer metasurface. The first four are conventional and are generated by electric and magnetic resonances, whereas the fifth one is caused by Fano resonance, which further extends the bandwidth. A prototype was designed, fabricated and measured to verify this method. Both the simulated and measured results show that a 1:4.4 bandwidth can be achieved for both x- and y-polarized waves, with almost all polarization conversion ratio (PCR) above 90%. This method provides an effective alternative to metasurface bandwidth extension and can also be extended to higher bands such as THz and infrared frequencies.Zhongtao ZhangJiafu WangXinmin FuYuxiang JiaHongya ChenMingde FengRuichao ZhuShaobo QuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Zhongtao Zhang Jiafu Wang Xinmin Fu Yuxiang Jia Hongya Chen Mingde Feng Ruichao Zhu Shaobo Qu Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance |
description |
Abstract In this paper, we propose a method of designing ultra-wideband single-layer metasurfaces for cross-polarization conversion, via the introduction of Fano resonances. By adding sub-branches onto the unit cell structure, the induced surface currents are disturbed, leading to coexistence of both bright and dark modes at higher frequencies. Due to the strong interaction between the two modes, Fano resonance can be produced. In this way, five resonances in all are produced by the single-layer metasurface. The first four are conventional and are generated by electric and magnetic resonances, whereas the fifth one is caused by Fano resonance, which further extends the bandwidth. A prototype was designed, fabricated and measured to verify this method. Both the simulated and measured results show that a 1:4.4 bandwidth can be achieved for both x- and y-polarized waves, with almost all polarization conversion ratio (PCR) above 90%. This method provides an effective alternative to metasurface bandwidth extension and can also be extended to higher bands such as THz and infrared frequencies. |
format |
article |
author |
Zhongtao Zhang Jiafu Wang Xinmin Fu Yuxiang Jia Hongya Chen Mingde Feng Ruichao Zhu Shaobo Qu |
author_facet |
Zhongtao Zhang Jiafu Wang Xinmin Fu Yuxiang Jia Hongya Chen Mingde Feng Ruichao Zhu Shaobo Qu |
author_sort |
Zhongtao Zhang |
title |
Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance |
title_short |
Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance |
title_full |
Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance |
title_fullStr |
Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance |
title_full_unstemmed |
Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance |
title_sort |
single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via fano resonance |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1660d44df6c44ca6acaec9e56f39f84f |
work_keys_str_mv |
AT zhongtaozhang singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance AT jiafuwang singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance AT xinminfu singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance AT yuxiangjia singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance AT hongyachen singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance AT mingdefeng singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance AT ruichaozhu singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance AT shaoboqu singlelayermetasurfaceforultrawidebandpolarizationconversionbandwidthextensionviafanoresonance |
_version_ |
1718391770369228800 |