Sequential Learning of Principal Curves: Summarizing Data Streams on the Fly
When confronted with massive data streams, summarizing data with dimension reduction methods such as PCA raises theoretical and algorithmic pitfalls. A principal curve acts as a nonlinear generalization of PCA, and the present paper proposes a novel algorithm to automatically and sequentially learn...
Guardado en:
Autores principales: | Le Li, Benjamin Guedj |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/16617bdbcbda4d09a3e9fb9cc38aeb99 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Three dimensional acoustic tweezers with vortex streaming
por: Junfei Li, et al.
Publicado: (2021) -
Towards communication in a curved spacetime geometry
por: Qasem Exirifard, et al.
Publicado: (2021) -
Summarizing Finite Mixture Model with Overlapping Quantification
por: Shunki Kyoya, et al.
Publicado: (2021) -
Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid
por: Anna Niggas, et al.
Publicado: (2021) -
Quantum spin mixing in Dirac materials
por: Ying-Jiun Chen, et al.
Publicado: (2021)