Sequential Learning of Principal Curves: Summarizing Data Streams on the Fly
When confronted with massive data streams, summarizing data with dimension reduction methods such as PCA raises theoretical and algorithmic pitfalls. A principal curve acts as a nonlinear generalization of PCA, and the present paper proposes a novel algorithm to automatically and sequentially learn...
Enregistré dans:
Auteurs principaux: | Le Li, Benjamin Guedj |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/16617bdbcbda4d09a3e9fb9cc38aeb99 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Three dimensional acoustic tweezers with vortex streaming
par: Junfei Li, et autres
Publié: (2021) -
Towards communication in a curved spacetime geometry
par: Qasem Exirifard, et autres
Publié: (2021) -
Summarizing Finite Mixture Model with Overlapping Quantification
par: Shunki Kyoya, et autres
Publié: (2021) -
Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid
par: Anna Niggas, et autres
Publié: (2021) -
Quantum spin mixing in Dirac materials
par: Ying-Jiun Chen, et autres
Publié: (2021)