Spectral and Spatial Feature Integrated Ensemble Learning Method for Grading Urban River Network Water Quality
Urban river networks have the characteristics of medium and micro scales, complex water quality, rapid change, and time–space incoherence. Aiming to monitor the water quality accurately, it is necessary to extract suitable features and establish a universal inversion model for key water quality para...
Guardado en:
Autores principales: | Xiaoteng Zhou, Chun Liu, Akram Akbar, Yun Xue, Yuan Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/167ef0c03c5041ce9f2057c8e7ba9322 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data
por: Botao Chen, et al.
Publicado: (2021) -
Mapping Aquaculture Areas with Multi-Source Spectral and Texture Features: A Case Study in the Pearl River Basin (Guangdong), China
por: Yue Xu, et al.
Publicado: (2021) -
Uncovering the Nature of Urban Land Use Composition Using Multi-Source Open Big Data with Ensemble Learning
por: Ying Tu, et al.
Publicado: (2021) -
REMOTE SENSING OF SEA SURFACE SALINITY: A CASE STUDY IN THE BURDEKIN RIVER, NORTH-EASTERN AUSTRALIA
por: Heron,M.L, et al.
Publicado: (2004) -
UAV‐derived imagery for vegetation structure estimation in rangelands: validation and application
por: Junzhe Zhang, et al.
Publicado: (2021)