<italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway

ABSTRACT Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection—the germination of Mucor circinelloides spores inside phagocytic cells—from an integrated transcriptomic and functional...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carlos Pérez-Arques, María Isabel Navarro-Mendoza, Laura Murcia, Carlos Lax, Pablo Martínez-García, Joseph Heitman, Francisco E. Nicolás, Victoriano Garre
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/16949cbc2b44439c8d9f8cae4741ccfb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:16949cbc2b44439c8d9f8cae4741ccfb
record_format dspace
spelling oai:doaj.org-article:16949cbc2b44439c8d9f8cae4741ccfb2021-11-15T15:55:13Z<italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway10.1128/mBio.02765-182150-7511https://doaj.org/article/16949cbc2b44439c8d9f8cae4741ccfb2019-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02765-18https://doaj.org/toc/2150-7511ABSTRACT Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection—the germination of Mucor circinelloides spores inside phagocytic cells—from an integrated transcriptomic and functional perspective. A relevant fungal gene network is remodeled in response to phagocytosis, being enriched in crucial functions to survive and germinate inside the phagosome, such as nutritional adaptation and response to oxidative stress. Correspondingly, the phagocytic cells induced a specific proinflammatory and apoptotic response to the pathogenic strain. Deletion of fungal genes encoding putative transcription factors (atf1, atf2, and gcn4), extracellular proteins (chi1 and pps1), and an aquaporin (aqp1) revealed that these genes perform important roles in survival following phagocytosis, germination inside the phagosome, and virulence in mice. atf1 and atf2 play a major role in these pathogenic processes, since their mutants showed the strongest phenotypes and both genes control a complex gene network of secondarily regulated genes, including chi1 and aqp1. These new insights into the initial phase of mucormycosis define genetic regulators and molecular processes that could serve as pharmacological targets. IMPORTANCE Mucorales are a group of ancient saprophytic fungi that cause neglected infectious diseases collectively known as mucormycoses. The molecular processes underlying the establishment and progression of this disease are largely unknown. Our work presents a transcriptomic study to unveil the Mucor circinelloides genetic network triggered in fungal spores in response to phagocytosis by macrophages and the transcriptional response of the host cells. Functional characterization of differentially expressed fungal genes revealed three transcription factors and three extracellular proteins essential for the fungus to survive and germinate inside the phagosome and to cause disease in mice. Two of the transcription factors, highly similar to activating transcription factors (ATFs), coordinate a complex secondary gene response involved in pathogenesis. The significance of our research is in characterizing the initial stages that lead to evasion of the host innate immune response and, in consequence, the dissemination of the infection. This genetic study offers possible targets for novel antifungal drugs against these opportunistic human pathogens.Carlos Pérez-ArquesMaría Isabel Navarro-MendozaLaura MurciaCarlos LaxPablo Martínez-GarcíaJoseph HeitmanFrancisco E. NicolásVictoriano GarreAmerican Society for Microbiologyarticleemerging pathogenshost-pathogen interactioninnate immunitymucormycosistranscriptomicsMicrobiologyQR1-502ENmBio, Vol 10, Iss 1 (2019)
institution DOAJ
collection DOAJ
language EN
topic emerging pathogens
host-pathogen interaction
innate immunity
mucormycosis
transcriptomics
Microbiology
QR1-502
spellingShingle emerging pathogens
host-pathogen interaction
innate immunity
mucormycosis
transcriptomics
Microbiology
QR1-502
Carlos Pérez-Arques
María Isabel Navarro-Mendoza
Laura Murcia
Carlos Lax
Pablo Martínez-García
Joseph Heitman
Francisco E. Nicolás
Victoriano Garre
<italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway
description ABSTRACT Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection—the germination of Mucor circinelloides spores inside phagocytic cells—from an integrated transcriptomic and functional perspective. A relevant fungal gene network is remodeled in response to phagocytosis, being enriched in crucial functions to survive and germinate inside the phagosome, such as nutritional adaptation and response to oxidative stress. Correspondingly, the phagocytic cells induced a specific proinflammatory and apoptotic response to the pathogenic strain. Deletion of fungal genes encoding putative transcription factors (atf1, atf2, and gcn4), extracellular proteins (chi1 and pps1), and an aquaporin (aqp1) revealed that these genes perform important roles in survival following phagocytosis, germination inside the phagosome, and virulence in mice. atf1 and atf2 play a major role in these pathogenic processes, since their mutants showed the strongest phenotypes and both genes control a complex gene network of secondarily regulated genes, including chi1 and aqp1. These new insights into the initial phase of mucormycosis define genetic regulators and molecular processes that could serve as pharmacological targets. IMPORTANCE Mucorales are a group of ancient saprophytic fungi that cause neglected infectious diseases collectively known as mucormycoses. The molecular processes underlying the establishment and progression of this disease are largely unknown. Our work presents a transcriptomic study to unveil the Mucor circinelloides genetic network triggered in fungal spores in response to phagocytosis by macrophages and the transcriptional response of the host cells. Functional characterization of differentially expressed fungal genes revealed three transcription factors and three extracellular proteins essential for the fungus to survive and germinate inside the phagosome and to cause disease in mice. Two of the transcription factors, highly similar to activating transcription factors (ATFs), coordinate a complex secondary gene response involved in pathogenesis. The significance of our research is in characterizing the initial stages that lead to evasion of the host innate immune response and, in consequence, the dissemination of the infection. This genetic study offers possible targets for novel antifungal drugs against these opportunistic human pathogens.
format article
author Carlos Pérez-Arques
María Isabel Navarro-Mendoza
Laura Murcia
Carlos Lax
Pablo Martínez-García
Joseph Heitman
Francisco E. Nicolás
Victoriano Garre
author_facet Carlos Pérez-Arques
María Isabel Navarro-Mendoza
Laura Murcia
Carlos Lax
Pablo Martínez-García
Joseph Heitman
Francisco E. Nicolás
Victoriano Garre
author_sort Carlos Pérez-Arques
title <italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway
title_short <italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway
title_full <italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway
title_fullStr <italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway
title_full_unstemmed <italic toggle="yes">Mucor circinelloides</italic> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway
title_sort <italic toggle="yes">mucor circinelloides</italic> thrives inside the phagosome through an atf-mediated germination pathway
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/16949cbc2b44439c8d9f8cae4741ccfb
work_keys_str_mv AT carlosperezarques italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
AT mariaisabelnavarromendoza italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
AT lauramurcia italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
AT carloslax italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
AT pablomartinezgarcia italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
AT josephheitman italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
AT franciscoenicolas italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
AT victorianogarre italictoggleyesmucorcircinelloidesitalicthrivesinsidethephagosomethroughanatfmediatedgerminationpathway
_version_ 1718427198910627840