Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains
Determination of estrogen receptor status (ERS) in breast cancer tissue requires immunohistochemistry, which is sensitive to the vagaries of sample processing and the subjectivity of pathologists. Here the authors present a deep learning model that determines ERS from H&E stained tissue, which c...
Guardado en:
Autores principales: | Nikhil Naik, Ali Madani, Andre Esteva, Nitish Shirish Keskar, Michael F. Press, Daniel Ruderman, David B. Agus, Richard Socher |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/169f3fde02b44f04a44160ad8fb94419 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning-enabled medical computer vision
por: Andre Esteva, et al.
Publicado: (2021) -
Deep learning-based transformation of H&E stained tissues into special stains
por: Kevin de Haan, et al.
Publicado: (2021) -
Learning deep features for dead and living breast cancer cell classification without staining
por: Gisela Pattarone, et al.
Publicado: (2021) -
Automatic nuclei segmentation in H&E stained breast cancer histopathology images.
por: Mitko Veta, et al.
Publicado: (2013) -
COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization
por: Andre Esteva, et al.
Publicado: (2021)