Deep neural networks enable quantitative movement analysis using single-camera videos
In the context of diseases impairing movement, quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and trained personnel. Here, the authors present a method for predicting clinically relevant motion parameters...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/16ae278becf743e49bd54eccf9afc9a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:16ae278becf743e49bd54eccf9afc9a2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:16ae278becf743e49bd54eccf9afc9a22021-12-02T15:08:24ZDeep neural networks enable quantitative movement analysis using single-camera videos10.1038/s41467-020-17807-z2041-1723https://doaj.org/article/16ae278becf743e49bd54eccf9afc9a22020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17807-zhttps://doaj.org/toc/2041-1723In the context of diseases impairing movement, quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and trained personnel. Here, the authors present a method for predicting clinically relevant motion parameters from an ordinary video of a patient.Łukasz KidzińskiBryan YangJennifer L. HicksApoorva RajagopalScott L. DelpMichael H. SchwartzNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Łukasz Kidziński Bryan Yang Jennifer L. Hicks Apoorva Rajagopal Scott L. Delp Michael H. Schwartz Deep neural networks enable quantitative movement analysis using single-camera videos |
description |
In the context of diseases impairing movement, quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and trained personnel. Here, the authors present a method for predicting clinically relevant motion parameters from an ordinary video of a patient. |
format |
article |
author |
Łukasz Kidziński Bryan Yang Jennifer L. Hicks Apoorva Rajagopal Scott L. Delp Michael H. Schwartz |
author_facet |
Łukasz Kidziński Bryan Yang Jennifer L. Hicks Apoorva Rajagopal Scott L. Delp Michael H. Schwartz |
author_sort |
Łukasz Kidziński |
title |
Deep neural networks enable quantitative movement analysis using single-camera videos |
title_short |
Deep neural networks enable quantitative movement analysis using single-camera videos |
title_full |
Deep neural networks enable quantitative movement analysis using single-camera videos |
title_fullStr |
Deep neural networks enable quantitative movement analysis using single-camera videos |
title_full_unstemmed |
Deep neural networks enable quantitative movement analysis using single-camera videos |
title_sort |
deep neural networks enable quantitative movement analysis using single-camera videos |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/16ae278becf743e49bd54eccf9afc9a2 |
work_keys_str_mv |
AT łukaszkidzinski deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos AT bryanyang deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos AT jenniferlhicks deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos AT apoorvarajagopal deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos AT scottldelp deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos AT michaelhschwartz deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos |
_version_ |
1718388106822942720 |