Deep neural networks enable quantitative movement analysis using single-camera videos

In the context of diseases impairing movement, quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and trained personnel. Here, the authors present a method for predicting clinically relevant motion parameters...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Łukasz Kidziński, Bryan Yang, Jennifer L. Hicks, Apoorva Rajagopal, Scott L. Delp, Michael H. Schwartz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/16ae278becf743e49bd54eccf9afc9a2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:16ae278becf743e49bd54eccf9afc9a2
record_format dspace
spelling oai:doaj.org-article:16ae278becf743e49bd54eccf9afc9a22021-12-02T15:08:24ZDeep neural networks enable quantitative movement analysis using single-camera videos10.1038/s41467-020-17807-z2041-1723https://doaj.org/article/16ae278becf743e49bd54eccf9afc9a22020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17807-zhttps://doaj.org/toc/2041-1723In the context of diseases impairing movement, quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and trained personnel. Here, the authors present a method for predicting clinically relevant motion parameters from an ordinary video of a patient.Łukasz KidzińskiBryan YangJennifer L. HicksApoorva RajagopalScott L. DelpMichael H. SchwartzNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Łukasz Kidziński
Bryan Yang
Jennifer L. Hicks
Apoorva Rajagopal
Scott L. Delp
Michael H. Schwartz
Deep neural networks enable quantitative movement analysis using single-camera videos
description In the context of diseases impairing movement, quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and trained personnel. Here, the authors present a method for predicting clinically relevant motion parameters from an ordinary video of a patient.
format article
author Łukasz Kidziński
Bryan Yang
Jennifer L. Hicks
Apoorva Rajagopal
Scott L. Delp
Michael H. Schwartz
author_facet Łukasz Kidziński
Bryan Yang
Jennifer L. Hicks
Apoorva Rajagopal
Scott L. Delp
Michael H. Schwartz
author_sort Łukasz Kidziński
title Deep neural networks enable quantitative movement analysis using single-camera videos
title_short Deep neural networks enable quantitative movement analysis using single-camera videos
title_full Deep neural networks enable quantitative movement analysis using single-camera videos
title_fullStr Deep neural networks enable quantitative movement analysis using single-camera videos
title_full_unstemmed Deep neural networks enable quantitative movement analysis using single-camera videos
title_sort deep neural networks enable quantitative movement analysis using single-camera videos
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/16ae278becf743e49bd54eccf9afc9a2
work_keys_str_mv AT łukaszkidzinski deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos
AT bryanyang deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos
AT jenniferlhicks deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos
AT apoorvarajagopal deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos
AT scottldelp deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos
AT michaelhschwartz deepneuralnetworksenablequantitativemovementanalysisusingsinglecameravideos
_version_ 1718388106822942720