Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology

Abstract The microalgae-based technology has been developed to reduce biogas slurry nutrients and upgrade biogas simultaneously. In this work, five microalgal strains named Chlorella vulgaris, Scenedesmus obliquus, Selenastrum capricornutum, Nitzschia palea, and Anabaena spiroides under mono- and co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xue Wang, Keting Bao, Weixing Cao, Yongjun Zhao, Chang Wei Hu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/16b7ba7473c6423f9b1e8069f00600b9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:16b7ba7473c6423f9b1e8069f00600b9
record_format dspace
spelling oai:doaj.org-article:16b7ba7473c6423f9b1e8069f00600b92021-12-02T15:05:57ZScreening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology10.1038/s41598-017-05841-92045-2322https://doaj.org/article/16b7ba7473c6423f9b1e8069f00600b92017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05841-9https://doaj.org/toc/2045-2322Abstract The microalgae-based technology has been developed to reduce biogas slurry nutrients and upgrade biogas simultaneously. In this work, five microalgal strains named Chlorella vulgaris, Scenedesmus obliquus, Selenastrum capricornutum, Nitzschia palea, and Anabaena spiroides under mono- and co-cultivation were used for biogas upgrading. Optimum biogas slurry nutrient reduction could be achieved by co-cultivating microalgae (Chlorella vulgaris, Scenedesmus obliquus, and Nitzschia palea) with fungi using the pelletization technology. In addition, the effects of different ratio of mixed LED light wavelengths applying mixed light-emitting diode during algae strains and fungi co-cultivation on CO2 and biogas slurry nutrient removal efficiency were also investigated. The results showed that the COD (chemical oxygen demand), TN (total nitrogen), and TP (total phosphorus) removal efficiency were 85.82 ± 5.37%, 83.31 ± 4.72%, and 84.26 ± 5.58%, respectively at red: blue = 5:5 under the co-cultivation of S. obliquus and fungi. In terms of biogas upgrading, CH4 contents were higher than 90% (v/v) for all strains, except the co-cultivation with S. obliquus and fungi at red: blue = 3:7. The results indicated that co-cultivation of microalgae with fungi under mixed light wavelengths treatments was most successful in nutrient removal from wastewater and biogas upgrading.Xue WangKeting BaoWeixing CaoYongjun ZhaoChang Wei HuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Xue Wang
Keting Bao
Weixing Cao
Yongjun Zhao
Chang Wei Hu
Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology
description Abstract The microalgae-based technology has been developed to reduce biogas slurry nutrients and upgrade biogas simultaneously. In this work, five microalgal strains named Chlorella vulgaris, Scenedesmus obliquus, Selenastrum capricornutum, Nitzschia palea, and Anabaena spiroides under mono- and co-cultivation were used for biogas upgrading. Optimum biogas slurry nutrient reduction could be achieved by co-cultivating microalgae (Chlorella vulgaris, Scenedesmus obliquus, and Nitzschia palea) with fungi using the pelletization technology. In addition, the effects of different ratio of mixed LED light wavelengths applying mixed light-emitting diode during algae strains and fungi co-cultivation on CO2 and biogas slurry nutrient removal efficiency were also investigated. The results showed that the COD (chemical oxygen demand), TN (total nitrogen), and TP (total phosphorus) removal efficiency were 85.82 ± 5.37%, 83.31 ± 4.72%, and 84.26 ± 5.58%, respectively at red: blue = 5:5 under the co-cultivation of S. obliquus and fungi. In terms of biogas upgrading, CH4 contents were higher than 90% (v/v) for all strains, except the co-cultivation with S. obliquus and fungi at red: blue = 3:7. The results indicated that co-cultivation of microalgae with fungi under mixed light wavelengths treatments was most successful in nutrient removal from wastewater and biogas upgrading.
format article
author Xue Wang
Keting Bao
Weixing Cao
Yongjun Zhao
Chang Wei Hu
author_facet Xue Wang
Keting Bao
Weixing Cao
Yongjun Zhao
Chang Wei Hu
author_sort Xue Wang
title Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology
title_short Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology
title_full Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology
title_fullStr Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology
title_full_unstemmed Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology
title_sort screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/16b7ba7473c6423f9b1e8069f00600b9
work_keys_str_mv AT xuewang screeningofmicroalgaeforintegralbiogasslurrynutrientremovalandbiogasupgradingbydifferentmicroalgaecultivationtechnology
AT ketingbao screeningofmicroalgaeforintegralbiogasslurrynutrientremovalandbiogasupgradingbydifferentmicroalgaecultivationtechnology
AT weixingcao screeningofmicroalgaeforintegralbiogasslurrynutrientremovalandbiogasupgradingbydifferentmicroalgaecultivationtechnology
AT yongjunzhao screeningofmicroalgaeforintegralbiogasslurrynutrientremovalandbiogasupgradingbydifferentmicroalgaecultivationtechnology
AT changweihu screeningofmicroalgaeforintegralbiogasslurrynutrientremovalandbiogasupgradingbydifferentmicroalgaecultivationtechnology
_version_ 1718388627996672000