Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation

In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wenjuan Ren, Shie Zhou, Zhanpeng Yang, Quan Shi, Xian Sun, Luyi Yang
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:16d7b5987e864a538b69a0f7c9ea5d1e
record_format dspace
spelling oai:doaj.org-article:16d7b5987e864a538b69a0f7c9ea5d1e2021-11-18T00:11:24ZMetric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation2169-353610.1109/ACCESS.2021.3123281https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9585694/https://doaj.org/toc/2169-3536In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joint distribution adaptation by embedding the original feature subspace to a common subspace. It can been seen as a part of feature embedding used for the models based feature alignment. Our experiments show that constructed mappings have the abilities to alleviate the feature discrepancy and mitigate the distribution shift between source domain and target domains.Wenjuan RenShie ZhouZhanpeng YangQuan ShiXian SunLuyi YangIEEEarticleDomain adaptationmetric information matrixmaximum mean discrepancyToeplitz matrixconvolutional filter maskElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 148017-148023 (2021)
institution DOAJ
collection DOAJ
language EN
topic Domain adaptation
metric information matrix
maximum mean discrepancy
Toeplitz matrix
convolutional filter mask
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Domain adaptation
metric information matrix
maximum mean discrepancy
Toeplitz matrix
convolutional filter mask
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Wenjuan Ren
Shie Zhou
Zhanpeng Yang
Quan Shi
Xian Sun
Luyi Yang
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
description In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joint distribution adaptation by embedding the original feature subspace to a common subspace. It can been seen as a part of feature embedding used for the models based feature alignment. Our experiments show that constructed mappings have the abilities to alleviate the feature discrepancy and mitigate the distribution shift between source domain and target domains.
format article
author Wenjuan Ren
Shie Zhou
Zhanpeng Yang
Quan Shi
Xian Sun
Luyi Yang
author_facet Wenjuan Ren
Shie Zhou
Zhanpeng Yang
Quan Shi
Xian Sun
Luyi Yang
author_sort Wenjuan Ren
title Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
title_short Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
title_full Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
title_fullStr Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
title_full_unstemmed Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
title_sort metric information matrix for maximum mean discrepancy for domain adaptation
publisher IEEE
publishDate 2021
url https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e
work_keys_str_mv AT wenjuanren metricinformationmatrixformaximummeandiscrepancyfordomainadaptation
AT shiezhou metricinformationmatrixformaximummeandiscrepancyfordomainadaptation
AT zhanpengyang metricinformationmatrixformaximummeandiscrepancyfordomainadaptation
AT quanshi metricinformationmatrixformaximummeandiscrepancyfordomainadaptation
AT xiansun metricinformationmatrixformaximummeandiscrepancyfordomainadaptation
AT luyiyang metricinformationmatrixformaximummeandiscrepancyfordomainadaptation
_version_ 1718425146027409408