Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joi...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:16d7b5987e864a538b69a0f7c9ea5d1e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:16d7b5987e864a538b69a0f7c9ea5d1e2021-11-18T00:11:24ZMetric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation2169-353610.1109/ACCESS.2021.3123281https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9585694/https://doaj.org/toc/2169-3536In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joint distribution adaptation by embedding the original feature subspace to a common subspace. It can been seen as a part of feature embedding used for the models based feature alignment. Our experiments show that constructed mappings have the abilities to alleviate the feature discrepancy and mitigate the distribution shift between source domain and target domains.Wenjuan RenShie ZhouZhanpeng YangQuan ShiXian SunLuyi YangIEEEarticleDomain adaptationmetric information matrixmaximum mean discrepancyToeplitz matrixconvolutional filter maskElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 148017-148023 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Domain adaptation metric information matrix maximum mean discrepancy Toeplitz matrix convolutional filter mask Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Domain adaptation metric information matrix maximum mean discrepancy Toeplitz matrix convolutional filter mask Electrical engineering. Electronics. Nuclear engineering TK1-9971 Wenjuan Ren Shie Zhou Zhanpeng Yang Quan Shi Xian Sun Luyi Yang Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation |
description |
In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joint distribution adaptation by embedding the original feature subspace to a common subspace. It can been seen as a part of feature embedding used for the models based feature alignment. Our experiments show that constructed mappings have the abilities to alleviate the feature discrepancy and mitigate the distribution shift between source domain and target domains. |
format |
article |
author |
Wenjuan Ren Shie Zhou Zhanpeng Yang Quan Shi Xian Sun Luyi Yang |
author_facet |
Wenjuan Ren Shie Zhou Zhanpeng Yang Quan Shi Xian Sun Luyi Yang |
author_sort |
Wenjuan Ren |
title |
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation |
title_short |
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation |
title_full |
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation |
title_fullStr |
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation |
title_full_unstemmed |
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation |
title_sort |
metric information matrix for maximum mean discrepancy for domain adaptation |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e |
work_keys_str_mv |
AT wenjuanren metricinformationmatrixformaximummeandiscrepancyfordomainadaptation AT shiezhou metricinformationmatrixformaximummeandiscrepancyfordomainadaptation AT zhanpengyang metricinformationmatrixformaximummeandiscrepancyfordomainadaptation AT quanshi metricinformationmatrixformaximummeandiscrepancyfordomainadaptation AT xiansun metricinformationmatrixformaximummeandiscrepancyfordomainadaptation AT luyiyang metricinformationmatrixformaximummeandiscrepancyfordomainadaptation |
_version_ |
1718425146027409408 |