Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joi...
Guardado en:
Autores principales: | Wenjuan Ren, Shie Zhou, Zhanpeng Yang, Quan Shi, Xian Sun, Luyi Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of Block-Structured Covariance Matrix on an Example of Metabolomic Data
por: Adam Mieldzioc, et al.
Publicado: (2021) -
Kernel Adaptive Filters With Feedback Based on Maximum Correntropy
por: Shiyuan Wang, et al.
Publicado: (2018) -
Coupling Matrix Extraction of Microwave Filters by Using One-Dimensional Convolutional Autoencoders
por: Yongliang Zhang, et al.
Publicado: (2021) -
Hybrid Matrix Completion Model for Improved Images Recovery and Recommendation Systems
por: Kai Xu, et al.
Publicado: (2021) -
Fattening The Long Tail Items in E-Commerce
por: Kumar,Bipul, et al.
Publicado: (2017)