Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces
Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm. Suppose that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings. Let C be a nonempty closed convex subset of E, f:C  →  C a contractive mapping (or...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/16da234b8dba4d378fb788dfd6c77de2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:16da234b8dba4d378fb788dfd6c77de2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:16da234b8dba4d378fb788dfd6c77de22021-12-02T11:29:20ZConvergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces10.1155/2008/1675351687-18201687-1812https://doaj.org/article/16da234b8dba4d378fb788dfd6c77de22008-05-01T00:00:00Zhttp://dx.doi.org/10.1155/2008/167535https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm. Suppose that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings. Let C be a nonempty closed convex subset of E, f:C  →  C a contractive mapping (or a weakly contractive mapping), and T:C  →  C nonexpansive mapping with the fixed point set F(T)  ≠  ∅. Let {xn} be generated by a new composite iterative scheme: yn=λnf(xn)+(1−λn)Txn, xn+1=(1−βn)yn+βnTyn, (n≥0). It is proved that {xn} converges strongly to a point in F(T), which is a solution of certain variational inequality provided that the sequence {λn}⊂(0,1) satisfies limn→∞λn=0 and ∑n=1∞λn=∞, {βn}⊂[0,a) for some 0<a<1 and the sequence {xn} is asymptotically regular.Jong Soo JungSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2008 (2008) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Jong Soo Jung Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces |
description |
Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm. Suppose that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings. Let C be a nonempty closed convex subset of E, f:C  →  C a contractive mapping (or a weakly contractive mapping), and T:C  →  C nonexpansive mapping with the fixed point set F(T)  ≠  ∅. Let {xn} be generated by a new composite iterative scheme: yn=λnf(xn)+(1−λn)Txn, xn+1=(1−βn)yn+βnTyn, (n≥0). It is proved that {xn} converges strongly to a point in F(T), which is a solution of certain variational inequality provided that the sequence {λn}⊂(0,1) satisfies limn→∞λn=0 and ∑n=1∞λn=∞, {βn}⊂[0,a) for some 0<a<1 and the sequence {xn} is asymptotically regular. |
format |
article |
author |
Jong Soo Jung |
author_facet |
Jong Soo Jung |
author_sort |
Jong Soo Jung |
title |
Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces |
title_short |
Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces |
title_full |
Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces |
title_fullStr |
Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces |
title_full_unstemmed |
Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces |
title_sort |
convergence on composite iterative schemes for nonexpansive mappings in banach spaces |
publisher |
SpringerOpen |
publishDate |
2008 |
url |
https://doaj.org/article/16da234b8dba4d378fb788dfd6c77de2 |
work_keys_str_mv |
AT jongsoojung convergenceoncompositeiterativeschemesfornonexpansivemappingsinbanachspaces |
_version_ |
1718395863220355072 |