Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients
Significant advances in lymph node involvement (LNI) risk modeling in prostate cancer (PCa) have been achieved with the addition of visual interpretation of magnetic resonance imaging (MRI) data, but it is likely that quantitative analysis could further improve prediction models. In this study, we a...
Enregistré dans:
Auteurs principaux: | Vincent Bourbonne, Vincent Jaouen, Truong An Nguyen, Valentin Tissot, Laurent Doucet, Mathieu Hatt, Dimitris Visvikis, Olivier Pradier, Antoine Valéri, Georges Fournier, Ulrike Schick |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/16e452384f4c44e9aed8e538056cc96b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The association between lymph node metastases and long-term survival in patients with epithelial ovarian cancer
par: Katarzyna Lepinay, et autres
Publié: (2020) -
Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer
par: Yadi Zhu, et autres
Publié: (2021) -
Development and Internal Validation of a Preoperative Prediction Model for Sentinel Lymph Node Status in Breast Cancer: Combining Radiomics Signature and Clinical Factors
par: Chunhua Wang, et autres
Publié: (2021) -
Lymph Node Status in Colorectal Cancer; Is There a Case for Auditing the Pathologist and the Surgeon?
par: Emil Salmo, et autres
Publié: (2019) -
Modern view on the issues of diagnosis and verification of axillary lymph nodes involvement in early breast cancer
par: Irina V. Kolyadina, et autres
Publié: (2020)