Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control

Abstract The emergence of cylindrical vector beam (CVB) multiplexing has opened new avenues for high-capacity optical communication. Although several configurations have been developed to couple/separate CVBs, the CVB multiplexer/demultiplexer remains elusive due to lack of effective off-axis polari...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Shuqing Chen, Zhiqiang Xie, Huapeng Ye, Xinrou Wang, Zhenghao Guo, Yanliang He, Ying Li, Xiaocong Yuan, Dianyuan Fan
Format: article
Langue:EN
Publié: Nature Publishing Group 2021
Sujets:
Accès en ligne:https://doaj.org/article/16eb091ad62d4f7fa8008dee6cc2e0c6
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract The emergence of cylindrical vector beam (CVB) multiplexing has opened new avenues for high-capacity optical communication. Although several configurations have been developed to couple/separate CVBs, the CVB multiplexer/demultiplexer remains elusive due to lack of effective off-axis polarization control technologies. Here we report a straightforward approach to realize off-axis polarization control for CVB multiplexing/demultiplexing based on a metal–dielectric–metal metasurface. We show that the left- and right-handed circularly polarized (LHCP/RHCP) components of CVBs are independently modulated via spin-to-orbit interactions by the properly designed metasurface, and then simultaneously multiplexed and demultiplexed due to the reversibility of light path and the conservation of vector mode. We also show that the proposed multiplexers/demultiplexers are broadband (from 1310 to 1625 nm) and compatible with wavelength-division-multiplexing. As a proof of concept, we successfully demonstrate a four-channel CVB multiplexing communication, combining wavelength-division-multiplexing and polarization-division-multiplexing with a transmission rate of 1.56 Tbit/s and a bit-error-rate of 10−6 at the receive power of −21.6 dBm. This study paves the way for CVB multiplexing/demultiplexing and may benefit high-capacity CVB communication.