From small-scale forest structure to Amazon-wide carbon estimates
Improving estimates of forest biomass based on remote sensing data is important to assess global carbon cycling. Here the authors develop an approach to use forest gap models to simulate lidar waveforms and compare the outputs with ICESAT-1 GLAS profiles, showing improved estimates across the Amazon...
Guardado en:
Autores principales: | Edna Rödig, Nikolai Knapp, Rico Fischer, Friedrich J. Bohn, Ralph Dubayah, Hao Tang, Andreas Huth |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/16f0714eaaf44808ade6f451a84b3018 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model
por: Luise Bauer, et al.
Publicado: (2021) -
Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests
por: Faustinato Behivoke, et al.
Publicado: (2021) -
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks
por: Delphine Clara Zemp, et al.
Publicado: (2017) -
High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle
por: Katharina Brinck, et al.
Publicado: (2017) -
Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change
por: Viola H. A. Heinrich, et al.
Publicado: (2021)