Mining Google and Apple mobility data: temporal anatomy for COVID-19 social distancing
Abstract We employ the Google and Apple mobility data to identify, quantify and classify different degrees of social distancing and characterise their imprint on the first wave of the COVID-19 pandemic in Europe and in the United States. We identify the period of enacted social distancing via Google...
Guardado en:
Autores principales: | Corentin Cot, Giacomo Cacciapaglia, Francesco Sannino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/17102d800341415bafc9f8b66a59c882 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiwave pandemic dynamics explained: how to tame the next wave of infectious diseases
por: Giacomo Cacciapaglia, et al.
Publicado: (2021) -
Impact of US vaccination strategy on COVID-19 wave dynamics
por: Corentin Cot, et al.
Publicado: (2021) -
Effects of social distancing on the spreading of COVID-19 inferred from mobile phone data
por: Hamid Khataee, et al.
Publicado: (2021) -
Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine
por: Maoxin Zhang, et al.
Publicado: (2021) -
APPLICATION OF GOOGLE CLASSROOM, GOOGLE FORM AND QUIZIZZ IN CHEMICAL LEARNING DURING THE COVID-19 PANDEMIC
por: Bekti Mulatsih
Publicado: (2020)