A Convolutional Neural Network-Based End-to-End Self-Driving Using LiDAR and Camera Fusion: Analysis Perspectives in a Real-World Environment
In this paper, we develop end-to-end autonomous driving based on a 2D LiDAR sensor and camera sensor that predict the control value of the vehicle from the input data, instead of modeling rule-based autonomous driving. Different from many studies utilizing simulated data, we created an end-to-end au...
Guardado en:
Autores principales: | Mingyu Park, Hyeonseok Kim, Seongkeun Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1714953ab4284c21a69bc64ff0144aab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
por: Genping Zhao, et al.
Publicado: (2021) -
Assessing understory development in forest plantations using laser imaging detection and ranging (LiDAR)
por: HERNÁNDEZ,JAIME, et al.
Publicado: (2013) -
Mapping tree genera using discrete LiDAR and geometric tree metrics
por: Ko,Connie, et al.
Publicado: (2012) -
Estimating Historically Cleared and Forested Land in Massachusetts, USA, Using Airborne LiDAR and Archival Records
por: Katharine M. Johnson, et al.
Publicado: (2021) -
Performance of Mobile LiDAR in Real Road Driving Conditions
por: Jisoo Kim, et al.
Publicado: (2021)