Machine learning to determine optimal conditions for controlling the size of elastin-based particles
Abstract This paper evaluates the aggregation behavior of a potential drug and gene delivery system that combines branched polyethyleneimine (PEI), a positively-charged polyelectrolyte, and elastin-like polypeptide (ELP), a recombinant polymer that exhibits lower critical solution temperature (LCST)...
Guardado en:
Autores principales: | Jared S. Cobb, Alexandra Engel, Maria A. Seale, Amol V. Janorkar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1716b72bf59244aba9b1b7d7fd0b7d97 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling.
por: Elizabeth Jeanne Parent, et al.
Publicado: (2021) -
Molecular Size Modulates Pharmacokinetics, Biodistribution, and Renal Deposition of the Drug Delivery Biopolymer Elastin-like Polypeptide
por: Marija Kuna, et al.
Publicado: (2018) -
Optimal Placement and Sizing of Distributed Generators Based on Multiobjective Particle Swarm Optimization
por: Deyu Yang, et al.
Publicado: (2021) -
A Hybrid Finite Element—Machine Learning Backward Training Approach to Analyze the Optimal Machining Conditions
por: Kriz George, et al.
Publicado: (2021) -
Evolution of the fish heart by sub/neofunctionalization of an elastin gene
por: Yuuta Moriyama, et al.
Publicado: (2016)