Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients
Abstract Intensity harmonization techniques (IHT) are mandatory to homogenize multicentric MRIs before any quantitative analysis because signal intensities (SI) do not have standardized units. Radiomics combine quantification of tumors’ radiological phenotype with machine-learning to improve predict...
Guardado en:
Autores principales: | Amandine Crombé, Michèle Kind, David Fadli, François Le Loarer, Antoine Italiano, Xavier Buy, Olivier Saut |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/171eb74794744b88a09d9e582358e5b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A transfer learning approach to facilitate ComBat-based harmonization of multicentre radiomic features in new datasets.
por: Ronrick Da-Ano, et al.
Publicado: (2021) -
Radiomics and Artificial Intelligence in Uterine Sarcomas: A Systematic Review
por: Gloria Ravegnini, et al.
Publicado: (2021) -
PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology
por: M. Sollini, et al.
Publicado: (2017) -
Reproducibility and Repeatability of CBCT-Derived Radiomics Features
por: Hao Wang, et al.
Publicado: (2021) -
Radiomics feature robustness as measured using an MRI phantom
por: Joonsang Lee, et al.
Publicado: (2021)