Active discovery of organic semiconductors
Existing methods for organic semiconductor computational screening are limited by the computational demand of the process, leading to the identification of non-optimal material candidates. Here, the authors report machine learning method to guide the discovery of organic semiconductors.
Guardado en:
Autores principales: | Christian Kunkel, Johannes T. Margraf, Ke Chen, Harald Oberhofer, Karsten Reuter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/17214865234d479bbb2f2a156defa811 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pure non-local machine-learned density functional theory for electron correlation
por: Johannes T. Margraf, et al.
Publicado: (2021) -
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Elementary steps in electrical doping of organic semiconductors
por: Max L. Tietze, et al.
Publicado: (2018) -
Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis
por: Yoyo Hinuma, et al.
Publicado: (2016) -
Publisher Correction: Elementary steps in electrical doping of organic semiconductors
por: Max L. Tietze, et al.
Publicado: (2018)