The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules
Stellar systems are often formed through the collapse of dense molecular clouds which, in turn, return copious amounts of atomic and molecular material to the interstellar medium. An in-depth understanding of chemical evolution during this cyclic interaction between the stars and the interstellar me...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1730b71ab1804b18b37fea00c085775b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1730b71ab1804b18b37fea00c085775b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1730b71ab1804b18b37fea00c085775b2021-12-01T12:41:09ZThe Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules2296-987X10.3389/fspas.2021.757619https://doaj.org/article/1730b71ab1804b18b37fea00c085775b2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fspas.2021.757619/fullhttps://doaj.org/toc/2296-987XStellar systems are often formed through the collapse of dense molecular clouds which, in turn, return copious amounts of atomic and molecular material to the interstellar medium. An in-depth understanding of chemical evolution during this cyclic interaction between the stars and the interstellar medium is at the heart of astrochemistry. Systematic chemical composition changes as interstellar clouds evolve from the diffuse stage to dense, quiescent molecular clouds to star-forming regions and proto-planetary disks further enrich the molecular diversity leading to the evolution of ever more complex molecules. In particular, the icy mantles formed on interstellar dust grains and their irradiation are thought to be the origin of many of the observed molecules, including those that are deemed to be “prebiotic”; that is those molecules necessary for the origin of life. This review will discuss both observational (e.g., ALMA, SOFIA, Herschel) and laboratory investigations using terahertz and far-IR (THz/F-IR) spectroscopy, as well as centimeter and millimeter spectroscopies, and the role that they play in contributing to our understanding of the formation of prebiotic molecules. Mid-IR spectroscopy has typically been the primary tool used in laboratory studies, particularly those concerned with interstellar ice analogues. However, THz/F-IR spectroscopy offers an additional and complementary approach in that it provides the ability to investigate intermolecular interactions compared to the intramolecular modes available in the mid-IR. THz/F-IR spectroscopy is still somewhat under-utilized, but with the additional capability it brings, its popularity is likely to significantly increase in the near future. This review will discuss the strengths and limitations of such methods, and will also provide some suggestions on future research areas that should be pursued in the coming decade exploiting both space-borne and laboratory facilities.Duncan V. MifsudDuncan V. MifsudPerry A. HaileyAlejandra Traspas MuiñaOlivier AuriacombeNigel J. MasonSergio IoppoloFrontiers Media S.A.articleterahertz spectroscopyfar-IR spectroscopyastrochemistryinterstellar chemistryprebiotic chemistryreviewAstronomyQB1-991Geophysics. Cosmic physicsQC801-809ENFrontiers in Astronomy and Space Sciences, Vol 8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
terahertz spectroscopy far-IR spectroscopy astrochemistry interstellar chemistry prebiotic chemistry review Astronomy QB1-991 Geophysics. Cosmic physics QC801-809 |
spellingShingle |
terahertz spectroscopy far-IR spectroscopy astrochemistry interstellar chemistry prebiotic chemistry review Astronomy QB1-991 Geophysics. Cosmic physics QC801-809 Duncan V. Mifsud Duncan V. Mifsud Perry A. Hailey Alejandra Traspas Muiña Olivier Auriacombe Nigel J. Mason Sergio Ioppolo The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules |
description |
Stellar systems are often formed through the collapse of dense molecular clouds which, in turn, return copious amounts of atomic and molecular material to the interstellar medium. An in-depth understanding of chemical evolution during this cyclic interaction between the stars and the interstellar medium is at the heart of astrochemistry. Systematic chemical composition changes as interstellar clouds evolve from the diffuse stage to dense, quiescent molecular clouds to star-forming regions and proto-planetary disks further enrich the molecular diversity leading to the evolution of ever more complex molecules. In particular, the icy mantles formed on interstellar dust grains and their irradiation are thought to be the origin of many of the observed molecules, including those that are deemed to be “prebiotic”; that is those molecules necessary for the origin of life. This review will discuss both observational (e.g., ALMA, SOFIA, Herschel) and laboratory investigations using terahertz and far-IR (THz/F-IR) spectroscopy, as well as centimeter and millimeter spectroscopies, and the role that they play in contributing to our understanding of the formation of prebiotic molecules. Mid-IR spectroscopy has typically been the primary tool used in laboratory studies, particularly those concerned with interstellar ice analogues. However, THz/F-IR spectroscopy offers an additional and complementary approach in that it provides the ability to investigate intermolecular interactions compared to the intramolecular modes available in the mid-IR. THz/F-IR spectroscopy is still somewhat under-utilized, but with the additional capability it brings, its popularity is likely to significantly increase in the near future. This review will discuss the strengths and limitations of such methods, and will also provide some suggestions on future research areas that should be pursued in the coming decade exploiting both space-borne and laboratory facilities. |
format |
article |
author |
Duncan V. Mifsud Duncan V. Mifsud Perry A. Hailey Alejandra Traspas Muiña Olivier Auriacombe Nigel J. Mason Sergio Ioppolo |
author_facet |
Duncan V. Mifsud Duncan V. Mifsud Perry A. Hailey Alejandra Traspas Muiña Olivier Auriacombe Nigel J. Mason Sergio Ioppolo |
author_sort |
Duncan V. Mifsud |
title |
The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules |
title_short |
The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules |
title_full |
The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules |
title_fullStr |
The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules |
title_full_unstemmed |
The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules |
title_sort |
role of terahertz and far-ir spectroscopy in understanding the formation and evolution of interstellar prebiotic molecules |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/1730b71ab1804b18b37fea00c085775b |
work_keys_str_mv |
AT duncanvmifsud theroleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT duncanvmifsud theroleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT perryahailey theroleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT alejandratraspasmuina theroleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT olivierauriacombe theroleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT nigeljmason theroleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT sergioioppolo theroleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT duncanvmifsud roleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT duncanvmifsud roleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT perryahailey roleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT alejandratraspasmuina roleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT olivierauriacombe roleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT nigeljmason roleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules AT sergioioppolo roleofterahertzandfarirspectroscopyinunderstandingtheformationandevolutionofinterstellarprebioticmolecules |
_version_ |
1718405160669020160 |