Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques
Gearbox is one of the vital components in aircraft engines. If any small damage to gearbox, it can cause the breakdown of aircraft engine. Thus it is significant to study fault diagnosis in gearbox system. In this paper, two deep learning models (Long short term memory (LSTM) and Bi-directional long...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/17446db051b9492f92f42460381b8a3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:17446db051b9492f92f42460381b8a3e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:17446db051b9492f92f42460381b8a3e2021-12-05T14:10:51ZAircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques2191-026X10.1515/jisys-2019-0237https://doaj.org/article/17446db051b9492f92f42460381b8a3e2020-08-01T00:00:00Zhttps://doi.org/10.1515/jisys-2019-0237https://doaj.org/toc/2191-026XGearbox is one of the vital components in aircraft engines. If any small damage to gearbox, it can cause the breakdown of aircraft engine. Thus it is significant to study fault diagnosis in gearbox system. In this paper, two deep learning models (Long short term memory (LSTM) and Bi-directional long short term memory (BLSTM)) are proposed to classify the condition of gearbox into good or bad. These models are applied on aircraft gearbox vibration data in both time and frequency domain. A publicly available aircraft gearbox vibration dataset is used to evaluate the performance of proposed models. The results proved that accuracy achieved by LSTM and BLSTM are highly reliable and applicable in health monitoring of aircraft gearbox system in time domain as compared to frequency domain. Also, to show the superiority of proposed models for aircraft gearbox fault diagnosis, performance is compared with classical machine learning models.Mallikarjuna P BSreenatha MManjunath SKundur Niranjan CDe Gruyterarticlegearboxvibration datalong short term memorybi-directional long short term memoryScienceQElectronic computers. Computer scienceQA75.5-76.95ENJournal of Intelligent Systems, Vol 30, Iss 1, Pp 258-272 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
gearbox vibration data long short term memory bi-directional long short term memory Science Q Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
gearbox vibration data long short term memory bi-directional long short term memory Science Q Electronic computers. Computer science QA75.5-76.95 Mallikarjuna P B Sreenatha M Manjunath S Kundur Niranjan C Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques |
description |
Gearbox is one of the vital components in aircraft engines. If any small damage to gearbox, it can cause the breakdown of aircraft engine. Thus it is significant to study fault diagnosis in gearbox system. In this paper, two deep learning models (Long short term memory (LSTM) and Bi-directional long short term memory (BLSTM)) are proposed to classify the condition of gearbox into good or bad. These models are applied on aircraft gearbox vibration data in both time and frequency domain. A publicly available aircraft gearbox vibration dataset is used to evaluate the performance of proposed models. The results proved that accuracy achieved by LSTM and BLSTM are highly reliable and applicable in health monitoring of aircraft gearbox system in time domain as compared to frequency domain. Also, to show the superiority of proposed models for aircraft gearbox fault diagnosis, performance is compared with classical machine learning models. |
format |
article |
author |
Mallikarjuna P B Sreenatha M Manjunath S Kundur Niranjan C |
author_facet |
Mallikarjuna P B Sreenatha M Manjunath S Kundur Niranjan C |
author_sort |
Mallikarjuna P B |
title |
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques |
title_short |
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques |
title_full |
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques |
title_fullStr |
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques |
title_full_unstemmed |
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques |
title_sort |
aircraft gearbox fault diagnosis system: an approach based on deep learning techniques |
publisher |
De Gruyter |
publishDate |
2020 |
url |
https://doaj.org/article/17446db051b9492f92f42460381b8a3e |
work_keys_str_mv |
AT mallikarjunapb aircraftgearboxfaultdiagnosissystemanapproachbasedondeeplearningtechniques AT sreenatham aircraftgearboxfaultdiagnosissystemanapproachbasedondeeplearningtechniques AT manjunaths aircraftgearboxfaultdiagnosissystemanapproachbasedondeeplearningtechniques AT kundurniranjanc aircraftgearboxfaultdiagnosissystemanapproachbasedondeeplearningtechniques |
_version_ |
1718371660881461248 |