H∞ state estimation for discrete memristive neural networks with signal quantization and probabilistic time delay
In this paper, the problem of $ H_{\infty } $ state estimation is discussed for a class of delayed discrete memristive neural networks with signal quantization. A random variable obeying the Bernoulli distribution is used to describe the probabilistic time delay. A switching function is introduced t...
Guardado en:
Autores principales: | Le Feng, Liang Zhao, Liqun Ban |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/174742da321944369f94f5a1489eb705 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Communication constrained robust guidance strategy using quantized artificial time delay based control with input saturation
por: Arunava Banerjee, et al.
Publicado: (2021) -
Synchronisation of multiple neural networks via event‐triggered time‐varying delay hybrid impulsive control
por: Xiaoli Ruan, et al.
Publicado: (2021) -
Decentralized event‐triggered robust MPC for large‐scale networked Lipchitz non‐linear control systems
por: Saeid GHorbani, et al.
Publicado: (2021) -
Guaranteed‐performance consensus tracking for one‐sided Lipschitz non‐linear multi‐agent systems with switching communication topologies
por: Wanzhen Quan, et al.
Publicado: (2021) -
Bilateral force sensorless control based on finite‐time adaptive sliding‐mode‐assisted disturbance observer
por: Dapeng Tian, et al.
Publicado: (2021)