Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine

Accurate interpretation of molecular vibrational spectroscopic signals is key to understand chemical processes. Here the authors introduce a new computational approach to represent vibrational modes in terms of nuclear densities that captures anharmonic effects in protonated glycine.

Guardado en:
Detalles Bibliográficos
Autores principales: Chiara Aieta, Marco Micciarelli, Gianluca Bertaina, Michele Ceotto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/174a9023a2224d099ee71c7e7b562b5d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:174a9023a2224d099ee71c7e7b562b5d
record_format dspace
spelling oai:doaj.org-article:174a9023a2224d099ee71c7e7b562b5d2021-12-02T16:35:13ZAnharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine10.1038/s41467-020-18211-32041-1723https://doaj.org/article/174a9023a2224d099ee71c7e7b562b5d2020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18211-3https://doaj.org/toc/2041-1723Accurate interpretation of molecular vibrational spectroscopic signals is key to understand chemical processes. Here the authors introduce a new computational approach to represent vibrational modes in terms of nuclear densities that captures anharmonic effects in protonated glycine.Chiara AietaMarco MicciarelliGianluca BertainaMichele CeottoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Chiara Aieta
Marco Micciarelli
Gianluca Bertaina
Michele Ceotto
Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
description Accurate interpretation of molecular vibrational spectroscopic signals is key to understand chemical processes. Here the authors introduce a new computational approach to represent vibrational modes in terms of nuclear densities that captures anharmonic effects in protonated glycine.
format article
author Chiara Aieta
Marco Micciarelli
Gianluca Bertaina
Michele Ceotto
author_facet Chiara Aieta
Marco Micciarelli
Gianluca Bertaina
Michele Ceotto
author_sort Chiara Aieta
title Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
title_short Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
title_full Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
title_fullStr Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
title_full_unstemmed Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
title_sort anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/174a9023a2224d099ee71c7e7b562b5d
work_keys_str_mv AT chiaraaieta anharmonicquantumnucleardensitiesfromfulldimensionalvibrationaleigenfunctionswithapplicationtoprotonatedglycine
AT marcomicciarelli anharmonicquantumnucleardensitiesfromfulldimensionalvibrationaleigenfunctionswithapplicationtoprotonatedglycine
AT gianlucabertaina anharmonicquantumnucleardensitiesfromfulldimensionalvibrationaleigenfunctionswithapplicationtoprotonatedglycine
AT micheleceotto anharmonicquantumnucleardensitiesfromfulldimensionalvibrationaleigenfunctionswithapplicationtoprotonatedglycine
_version_ 1718383678733680640