Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye.

In the mouse model of unilateral laser-induced ocular hypertension (OHT) the microglia in both the treated and the normotensive untreated contralateral eye have morphological signs of activation and up-regulation of MHC-II expression in comparison with naïve. In the brain, rod-like microglia align t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rosa de Hoz, Beatriz I Gallego, Ana I Ramírez, Blanca Rojas, Juan J Salazar, Francisco J Valiente-Soriano, Marcelino Avilés-Trigueros, Maria P Villegas-Perez, Manuel Vidal-Sanz, Alberto Triviño, José M Ramírez
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/174bc0e40cdc4d86935281a347ee1d26
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In the mouse model of unilateral laser-induced ocular hypertension (OHT) the microglia in both the treated and the normotensive untreated contralateral eye have morphological signs of activation and up-regulation of MHC-II expression in comparison with naïve. In the brain, rod-like microglia align to less-injured neurons in an effort to limit damage. We investigate whether: i) microglial activation is secondary to laser injury or to a higher IOP and; ii) the presence of rod-like microglia is related to OHT. Three groups of mice were used: age-matched control (naïve, n=15); and two lasered: limbal (OHT, n=15); and non-draining portion of the sclera (scleral, n=3). In the lasered animals, treated eyes as well as contralateral eyes were analysed. Retinal whole-mounts were immunostained with antibodies against, Iba-1, NF-200, MHC-II, CD86, CD68 and Ym1. In the scleral group (normal ocular pressure) no microglial signs of activation were found. Similarly to naïve eyes, OHT-eyes and their contralateral eyes had ramified microglia in the nerve-fibre layer related to the blood vessel. However, only eyes with OHT had rod-like microglia that aligned end-to-end, coupling to form trains of multiple cells running parallel to axons in the retinal surface. Rod-like microglia were CD68+ and were related to retinal ganglion cells (RGCs) showing signs of degeneration (NF-200+RGCs). Although MHC-II expression was up-regulated in the microglia of the NFL both in OHT-eyes and their contralateral eyes, no expression of CD86 and Ym1 was detected in ramified or in rod-like microglia. After 15 days of unilateral lasering of the limbal and the non-draining portion of the sclera, activated microglia was restricted to OHT-eyes and their contralateral eyes. However, rod-like microglia were restricted to eyes with OHT and degenerated NF-200+RGCs and were absent from their contralateral eyes. Thus, rod-like microglia seem be related to the neurodegeneration associated with HTO.