Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors Using Gradient Boosting Frameworks
The development of crop varieties with stable performance in future environmental conditions represents a critical challenge in the context of climate change. Environmental data collected at the field level, such as soil and climatic information, can be relevant to improve predictive ability in geno...
Guardado en:
Autores principales: | Cathy C. Westhues, Gregory S. Mahone, Sofia da Silva, Patrick Thorwarth, Malthe Schmidt, Jan-Christoph Richter, Henner Simianer, Timothy M. Beissinger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/17737aeb89214a10bc7bc10c5ba2deca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of gradient tree boosting regressor for the prediction of scour depth around bridge piers
por: B. M. Sreedhara, et al.
Publicado: (2021) -
iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree
por: Yunyun Liang, et al.
Publicado: (2021) -
Rain garden infiltration rate modeling using gradient boosting machine and deep learning techniques
por: Sandeep Kumar, et al.
Publicado: (2021) -
Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties
por: Mahmood,Faisal, et al.
Publicado: (2017) -
Assessment of Genotype × Trait × Environment interactions of silage maize genotypes through GGE Biplot
por: Kaplan,Mahmut, et al.
Publicado: (2017)