Multivariate Nonlinear Sparse Mode Decomposition and Its Application in Gear Fault Diagnosis
Multi-channel signal has more abundant and accurate state characteristic information than single channel signal. How to separate fault characteristic information from the multi-channel signal is the key of fault diagnosis. As two typical multi-channel signal decomposition methods, multivariate empir...
Guardado en:
Autores principales: | Haiyang Pan, Wanwan Jiang, Qingyun Liu, Jinde Zheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1789dd9e615f4b749521c74e800dc5b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Universal and Adaptive Fabric Defect Detection Algorithm Based on Sparse Dictionary Learning
por: Xuejuan Kang, et al.
Publicado: (2020) -
Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
por: Peng Xi, et al.
Publicado: (2021) -
Vibration characteristics of single-stage planetary gear transmissions
por: Molina Vicuña,Cristián
Publicado: (2014) -
Optimal design of gear ratio using non-circular gear for jumping robot
por: Masafumi OKADA, et al.
Publicado: (2015) -
Nonlinear Fault-Tolerant Control Design for Singular Stochastic Systems With Fractional Stochastic Noise and Time-Delay
por: S. Sweetha, et al.
Publicado: (2021)