Multivariate Nonlinear Sparse Mode Decomposition and Its Application in Gear Fault Diagnosis
Multi-channel signal has more abundant and accurate state characteristic information than single channel signal. How to separate fault characteristic information from the multi-channel signal is the key of fault diagnosis. As two typical multi-channel signal decomposition methods, multivariate empir...
Enregistré dans:
Auteurs principaux: | Haiyang Pan, Wanwan Jiang, Qingyun Liu, Jinde Zheng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1789dd9e615f4b749521c74e800dc5b3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Universal and Adaptive Fabric Defect Detection Algorithm Based on Sparse Dictionary Learning
par: Xuejuan Kang, et autres
Publié: (2020) -
Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
par: Peng Xi, et autres
Publié: (2021) -
Vibration characteristics of single-stage planetary gear transmissions
par: Molina Vicuña,Cristián
Publié: (2014) -
Optimal design of gear ratio using non-circular gear for jumping robot
par: Masafumi OKADA, et autres
Publié: (2015) -
Nonlinear Fault-Tolerant Control Design for Singular Stochastic Systems With Fractional Stochastic Noise and Time-Delay
par: S. Sweetha, et autres
Publié: (2021)