Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
Deep Reinforcement Learning (DRL) enables agents to make decisions based on a well-designed reward function that suites a particular environment without any prior knowledge related to a given environment. The adaptation of hyperparameters has a great impact on the overall learning process and the le...
Enregistré dans:
Auteurs principaux: | Nesma M Ashraf, Reham R Mostafa, Rasha H Sakr, M Z Rashad |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/17aa2e0f666d4f07ba3b14861f6590be |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning
par: Shaashwat Agrawal, et autres
Publié: (2021) -
Optimal hyperparameter tuning of random forests for estimating causal treatment effects
par: Lateef Amusa, et autres
Publié: (2021) -
Parameter Reduction in Fuzzy Soft Set Based on Whale Optimization Algorithm
par: Zhi Kong, et autres
Publié: (2020) -
Development of a hyperparameter optimization method for recommendatory models based on matrix factorization
par: Alexander Nechaev, et autres
Publié: (2021) -
Optimized controller design for islanded microgrid using non-dominated sorting whale optimization algorithm (NSWOA)
par: Quazi Nafees Ul Islam, et autres
Publié: (2021)