Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
In this paper, we fix \(N\)-many \(l^2\)-Hilbert spaces \(H_k\) whose dimensions are \(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\), for \(k=1,\ldots,N\), for \(N \in \mathbb{N}\setminus\{1\}\). And then, construct a Hilbert space \(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\) induc...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AGH Univeristy of Science and Technology Press
2021
|
Materias: | |
Acceso en línea: | https://doi.org/10.7494/OpMath.2021.41.6.755 https://doaj.org/article/17b587ffd90944e5907aee5bf60351e5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, we fix \(N\)-many \(l^2\)-Hilbert spaces \(H_k\) whose dimensions are \(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\), for \(k=1,\ldots,N\), for \(N \in \mathbb{N}\setminus\{1\}\). And then, construct a Hilbert space \(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\) induced by \(H_{1},\ldots,H_{N}\), and study certain types of operators on \(\mathfrak{F}\). In particular, we are interested in so-called jump-shift operators. The main results (i) characterize the spectral properties of these operators, and (ii) show how such operators affect the semicircular law induced by \(\bigcup^N_{k=1} \mathcal{B}_{k}\), where \(\mathcal{B}_{k}\) are the orthonormal bases of \(H_{k}\), for \(k=1,\ldots,N\). |
---|