Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law

In this paper, we fix \(N\)-many \(l^2\)-Hilbert spaces \(H_k\) whose dimensions are \(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\), for \(k=1,\ldots,N\), for \(N \in \mathbb{N}\setminus\{1\}\). And then, construct a Hilbert space \(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\) induc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ilwoo Cho
Formato: article
Lenguaje:EN
Publicado: AGH Univeristy of Science and Technology Press 2021
Materias:
Acceso en línea:https://doi.org/10.7494/OpMath.2021.41.6.755
https://doaj.org/article/17b587ffd90944e5907aee5bf60351e5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:17b587ffd90944e5907aee5bf60351e5
record_format dspace
spelling oai:doaj.org-article:17b587ffd90944e5907aee5bf60351e52021-11-29T22:51:48ZSpectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law1232-9274https://doi.org/10.7494/OpMath.2021.41.6.755https://doaj.org/article/17b587ffd90944e5907aee5bf60351e52021-11-01T00:00:00Zhttps://www.opuscula.agh.edu.pl/vol41/6/art/opuscula_math_4137.pdfhttps://doaj.org/toc/1232-9274In this paper, we fix \(N\)-many \(l^2\)-Hilbert spaces \(H_k\) whose dimensions are \(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\), for \(k=1,\ldots,N\), for \(N \in \mathbb{N}\setminus\{1\}\). And then, construct a Hilbert space \(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\) induced by \(H_{1},\ldots,H_{N}\), and study certain types of operators on \(\mathfrak{F}\). In particular, we are interested in so-called jump-shift operators. The main results (i) characterize the spectral properties of these operators, and (ii) show how such operators affect the semicircular law induced by \(\bigcup^N_{k=1} \mathcal{B}_{k}\), where \(\mathcal{B}_{k}\) are the orthonormal bases of \(H_{k}\), for \(k=1,\ldots,N\).Ilwoo ChoAGH Univeristy of Science and Technology Pressarticleseparable hilbert spacesfree hilbert spacesjump operatorsshift operatorsjump-shift operatorssemicircular elementsApplied mathematics. Quantitative methodsT57-57.97ENOpuscula Mathematica, Vol 41, Iss 6, Pp 755-803 (2021)
institution DOAJ
collection DOAJ
language EN
topic separable hilbert spaces
free hilbert spaces
jump operators
shift operators
jump-shift operators
semicircular elements
Applied mathematics. Quantitative methods
T57-57.97
spellingShingle separable hilbert spaces
free hilbert spaces
jump operators
shift operators
jump-shift operators
semicircular elements
Applied mathematics. Quantitative methods
T57-57.97
Ilwoo Cho
Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
description In this paper, we fix \(N\)-many \(l^2\)-Hilbert spaces \(H_k\) whose dimensions are \(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\), for \(k=1,\ldots,N\), for \(N \in \mathbb{N}\setminus\{1\}\). And then, construct a Hilbert space \(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\) induced by \(H_{1},\ldots,H_{N}\), and study certain types of operators on \(\mathfrak{F}\). In particular, we are interested in so-called jump-shift operators. The main results (i) characterize the spectral properties of these operators, and (ii) show how such operators affect the semicircular law induced by \(\bigcup^N_{k=1} \mathcal{B}_{k}\), where \(\mathcal{B}_{k}\) are the orthonormal bases of \(H_{k}\), for \(k=1,\ldots,N\).
format article
author Ilwoo Cho
author_facet Ilwoo Cho
author_sort Ilwoo Cho
title Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
title_short Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
title_full Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
title_fullStr Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
title_full_unstemmed Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law
title_sort spectral properties of certain operators on the free hilbert space \mathfrak{f}[h_{1},...,h_{n}] and the semicircular law
publisher AGH Univeristy of Science and Technology Press
publishDate 2021
url https://doi.org/10.7494/OpMath.2021.41.6.755
https://doaj.org/article/17b587ffd90944e5907aee5bf60351e5
work_keys_str_mv AT ilwoocho spectralpropertiesofcertainoperatorsonthefreehilbertspacemathfrakfh1hnandthesemicircularlaw
_version_ 1718406847189221376