XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes
Abstract This study aimed to identify the optimal features of gait parameters to predict the fall risk level in older adults. The study included 746 older adults (age: 63–89 years). Gait tests (20 m walkway) included speed modification (slower, preferred, and faster-walking) while wearing the inerti...
Guardado en:
Autores principales: | Byungjoo Noh, Changhong Youm, Eunkyoung Goh, Myeounggon Lee, Hwayoung Park, Hyojeong Jeon, Oh Yoen Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/17d7e71570154b499afc0ec772378862 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of Decline in Global Cognitive Function Using Machine Learning with Feature Ranking of Gait and Physical Fitness Outcomes in Older Adults
por: Byungjoo Noh, et al.
Publicado: (2021) -
Estimating Health-Related Quality of Life Based on Demographic Characteristics, Questionnaires, Gait Ability, and Physical Fitness in Korean Elderly Adults
por: Myeounggon Lee, et al.
Publicado: (2021) -
History of falls, gait, balance, and fall risks in older cancer survivors living in the community
por: Huang MH, et al.
Publicado: (2015) -
Application of Machine Vision in Classifying Gait Frailty Among Older Adults
por: Yixin Liu, et al.
Publicado: (2021) -
Why Do They Fall? The Impact of Insomnia on Gait of Older Adults: A Case–Control Study
por: Kirshner D, et al.
Publicado: (2021)