XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes

Abstract This study aimed to identify the optimal features of gait parameters to predict the fall risk level in older adults. The study included 746 older adults (age: 63–89 years). Gait tests (20 m walkway) included speed modification (slower, preferred, and faster-walking) while wearing the inerti...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Byungjoo Noh, Changhong Youm, Eunkyoung Goh, Myeounggon Lee, Hwayoung Park, Hyojeong Jeon, Oh Yoen Kim
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/17d7e71570154b499afc0ec772378862
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!