Brain-Inspired Hardware Solutions for Inference in Bayesian Networks
The implementation of inference (i.e., computing posterior probabilities) in Bayesian networks using a conventional computing paradigm turns out to be inefficient in terms of energy, time, and space, due to the substantial resources required by floating-point operations. A departure from conventiona...
Guardado en:
Autores principales: | Leila Bagheriye, Johan Kwisthout |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/17df76067bbf494885b59d072926076c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hardware Architecture of Stochastic Computing Neural Network
por: CHEN Yuhao, SONG Yinjie, ZHU Yanan, GAO Yunfei, LI Hongge+
Publicado: (2021) -
ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking Neural Networks
por: Yihan Lin, et al.
Publicado: (2021) -
Bayesian Inference under Small Sample Sizes Using General Noninformative Priors
por: Jingjing He, et al.
Publicado: (2021) -
Looking for Sustainable Urban Mobility through Bayesian Networks
por: Giovanni Fusco
Publicado: (2004) -
High accurate analysis by experiment and simulation using Bayesian inference for corrugated cardboard
por: Masahiko SHIMAMURA, et al.
Publicado: (2016)