The Effects of Poly(vinyl acetate) Filled with Nanoclay and Cellulose Nanofibrils on Adhesion Strength of Poplar and Scots Pine Wood

Cellulose nanofibrils (CNFs) and nanoclay (NC) were selected to determine the effects of different fillers on the characterization of poly(vinyl acetate) (PVA). Characterizations of the PVA composites obtained were studied by thermogravimetric analysis (TGA/DTG), scanning electron microscopy (SEM) a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gökhan Gündüz, Nejla Aşık, Alice Wang
Formato: article
Lenguaje:EN
Publicado: University of Zagreb, Faculty of Forestry and Wood Technology 2016
Materias:
Acceso en línea:https://doaj.org/article/180782f7feb6404e8e2d07264cfaab42
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Cellulose nanofibrils (CNFs) and nanoclay (NC) were selected to determine the effects of different fillers on the characterization of poly(vinyl acetate) (PVA). Characterizations of the PVA composites obtained were studied by thermogravimetric analysis (TGA/DTG), scanning electron microscopy (SEM) and the lap joint shear strength (LJSS). The morphological studies revealed that some clumpings were observed in SEM images for 1%, 2%, and 4% wt loadings for CNFs and NC fillers. Dispersed particle orientation morphology and the wave sheets appear to be uniformly distributed on the surface of the composites. Seen as the effects of fillers on the thermal stability, the results showed that NC has a greater effect than CNFs, depending on the loading rates of fillers. Lap joint shear strength generally increased after adding CNFs and NC to PVA matrix. Thus, it can be said that PVA has higher bonding performance and can be used in applications requiring higher bonding strength.