Hidden neural networks for transmembrane protein topology prediction
Hidden Markov Models (HMMs) are amongst the most successful methods for predicting protein features in biological sequence analysis. However, there are biological problems where the Markovian assumption is not sufficient since the sequence context can provide useful information for prediction purpos...
Guardado en:
Autores principales: | Ioannis A. Tamposis, Dimitra Sarantopoulou, Margarita C. Theodoropoulou, Evangelia A. Stasi, Panagiota I. Kontou, Konstantinos D. Tsirigos, Pantelis G. Bagos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1826dcfedd9741849193e7818f992144 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modelling and Computational Experiment to Obtain Optimized Neural Network for Battery Thermal Management Data
por: Asif Afzal, et al.
Publicado: (2021) -
A Novel Hybrid Approach: Instance Weighted Hidden Naive Bayes
por: Liangjun Yu, et al.
Publicado: (2021) -
Frequency modulation of entorhinal cortex neuronal activity drives distinct frequency-dependent states of brain-wide dynamics
por: Piergiorgio Salvan, et al.
Publicado: (2021) -
<italic toggle="yes">Paracoccidioides</italic> Genomes Reflect High Levels of Species Divergence and Little Interspecific Gene Flow
por: Heidi Mavengere, et al.
Publicado: (2020) -
Optimal state selection and tuning parameters for a degradation model in bearings using Mel-Frequency Cepstral Coefficients and Hidden Markov Chains
por: Holguín,Mauricio, et al.
Publicado: (2016)