Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors
Abstract We developed a computational method named Molecule Optimization by Reinforcement Learning and Docking (MORLD) that automatically generates and optimizes lead compounds by combining reinforcement learning and docking to develop predicted novel inhibitors. This model requires only a target pr...
Guardado en:
Autores principales: | Woosung Jeon, Dongsup Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/183053f197494873ae10dd6fed21e202 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization
por: Jieun Choi, et al.
Publicado: (2021) -
An enhanced variant effect predictor based on a deep generative model and the Born-Again Networks
por: Ha Young Kim, et al.
Publicado: (2021) -
Experimental semi-autonomous eigensolver using reinforcement learning
por: C.-Y. Pan, et al.
Publicado: (2021) -
Deep Reinforcement Learning for Autonomous Water Heater Control
por: Kadir Amasyali, et al.
Publicado: (2021) -
A fast learning approach for autonomous navigation using a deep reinforcement learning method
por: Muhammad Mudassir Ejaz, et al.
Publicado: (2021)