Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews
For hotel management, occupancy is a crucial indicator. Online reviews from customers have gradually become the main reference for customers to evaluate accommodation choices. Thus, this study employed online customer rating scores and review text provided by booking systems to forecast monthly hote...
Enregistré dans:
Auteurs principaux: | Yu-Ming Chang, Chieh-Huang Chen, Jung-Pin Lai, Ying-Lei Lin, Ping-Feng Pai |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/184d48a5ffda42b8b3d31c3d90b4c231 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Coarse-Grained Sentiment Analysis Berbasis Natural Language Processing – Ulasan Hotel
par: Warnia Nengsih, et autres
Publié: (2021) -
Benchmarking Deep Learning Methods for Aspect Level Sentiment Classification
par: Tanu Sharma, et autres
Publié: (2021) -
Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
par: Ruba Obiedat, et autres
Publié: (2021) -
Urdu Sentiment Analysis via Multimodal Data Mining Based on Deep Learning Algorithms
par: Urooba Sehar, et autres
Publié: (2021) -
Methods for Mid-Term Forecasting of Crop Export and Production
par: Dmitry Devyatkin, et autres
Publié: (2021)