Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews
For hotel management, occupancy is a crucial indicator. Online reviews from customers have gradually become the main reference for customers to evaluate accommodation choices. Thus, this study employed online customer rating scores and review text provided by booking systems to forecast monthly hote...
Guardado en:
Autores principales: | Yu-Ming Chang, Chieh-Huang Chen, Jung-Pin Lai, Ying-Lei Lin, Ping-Feng Pai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/184d48a5ffda42b8b3d31c3d90b4c231 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coarse-Grained Sentiment Analysis Berbasis Natural Language Processing – Ulasan Hotel
por: Warnia Nengsih, et al.
Publicado: (2021) -
Benchmarking Deep Learning Methods for Aspect Level Sentiment Classification
por: Tanu Sharma, et al.
Publicado: (2021) -
Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
por: Ruba Obiedat, et al.
Publicado: (2021) -
Urdu Sentiment Analysis via Multimodal Data Mining Based on Deep Learning Algorithms
por: Urooba Sehar, et al.
Publicado: (2021) -
Methods for Mid-Term Forecasting of Crop Export and Production
por: Dmitry Devyatkin, et al.
Publicado: (2021)