Oxidation of Disk Lubricants: an NMR Study

Z-dol and Z-tetraol represent most often used disk lubricants. So that we would be better able to design lubricants of higher thermal stability (for Heat-Assisted-Magnetic-Recording application), detailed analysis of thermally induced oxidation processes of Z-dol and Z-tetraol were performed. Sampl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Paul H. Kasai, Masako Ikegami
Formato: article
Lenguaje:EN
Publicado: Japanese Society of Tribologists 2010
Materias:
nmr
Acceso en línea:https://doaj.org/article/1858fadbb3dd42b88025633c13aea9d7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Z-dol and Z-tetraol represent most often used disk lubricants. So that we would be better able to design lubricants of higher thermal stability (for Heat-Assisted-Magnetic-Recording application), detailed analysis of thermally induced oxidation processes of Z-dol and Z-tetraol were performed. Samples were heated in a thin-film configuration where facile infusion of oxygen occurred and were examined by F-19 and C-13 NMR. Z-dol was found to be stable in the 150 ∼ 200 °C temperature range. In the same temperature range Z-tetraol was found to undergo either (1) the well known step-wise oxidation of primary alcohol (alcohol → aldehyde → acid) or (2) direct conversion to Z-dol. The latter process is initiated by a base-catalyzed step whereby the end-group Z-O-CF2-CH2-O-CH2-CH(-OH)-CH2-OH converts to an aldehyde, Z-O-CF2-CH2-O-CH2-CH( = O), and CH3OH. Z-dol results upon oxidation of the aldehyde yielding Z-O-CF2-CH2-OH, CH2 = O and CO2. It was found that substitution of the terminal OH with a phenoxy unit suppressed these decomposition processes. Z-tetraol lubricant molecular chains that became bound to the carbon overcoat at their termini are also protected from these oxidation processes. Thus for HAMR application, a combination of lubricants bonded to the carbon overcoat at their termini and mobile lubricants possessing phenoxy groups at their termini may be the best possible system based on perfluoropolyether lubricants.