A Hybrid-Preference Neural Model for Basket-Sensitive Item Recommendation
Basket-Sensitive Item Recommendation (BSIR) is a challenging task that aims to recommend an item to add to the current basket given a user’s historical behaviors. The recommended item is supposed to be relevant to the items in current basket. Previous works mainly produce a recommendation...
Guardado en:
Autores principales: | Zhiqiang Pan, Wanyu Chen, Honghui Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1867ccc312da489bbd645f3a8c2aa8dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation
por: Guisheng Chen, et al.
Publicado: (2021) -
Personalized Preference Drift Aware Sequential Recommender System
por: Nakarin Sritrakool, et al.
Publicado: (2021) -
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
por: Xiangde Zhang, et al.
Publicado: (2021) -
A Hybrid Model Based on LFM and BiGRU Toward Research Paper Recommendation
por: Xu Zhao, et al.
Publicado: (2020) -
Application of Intelligent Recommendation for Agricultural Information: A Systematic Literature Review
por: Caixia Song, et al.
Publicado: (2021)